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SECTION	I:	PROGRAMMING	BASICS

There	was	something	amazingly	enticing	about	programming—Vint	Cerf

This	section	is	for	readers	who	are	learning	to	program.	If	you’re	an	experienced
programmer,	skip	forward	to	Summary	1	and	Summary	2.



Introduction

This	book	is	for	dedicated	novices	and	experienced	programmers.

You’re	a	novice	if	you	don’t	have	prior	programming	knowledge,	but
“dedicated”	because	we	give	you	just	enough	to	figure	it	out	on	your	own.	When
you’re	finished,	you’ll	have	a	solid	foundation	in	programming	and	in	Kotlin.

If	you’re	an	experienced	programmer,	skip	forward	to	Summary	1	and	Summary
2,	then	proceed	from	there.

The	“Atomic”	part	of	the	book	title	refers	to	atoms	as	the	smallest	indivisible
units.	In	this	book,	we	try	to	introduce	only	one	concept	per	chapter,	so	the
chapters	cannot	be	further	subdivided—thus	we	call	them	atoms.

Concepts
All	programming	languages	consist	of	features.	You	apply	these	features	to
produce	results.	Kotlin	is	powerful—not	only	does	it	have	a	rich	set	of	features,
but	you	can	usually	express	those	features	in	numerous	ways.

If	everything	is	dumped	on	you	too	quickly,	you	might	come	away	thinking
Kotlin	is	“too	complicated.”

This	book	attempts	to	prevent	overwhelm.	We	teach	you	the	language	carefully
and	deliberately,	using	the	following	principles:

1.	 Baby	steps	and	small	wins.	We	cast	off	the	tyranny	of	the	chapter.	Instead,
we	present	each	small	step	as	an	atomic	concept	or	simply	atom,	which
looks	like	a	tiny	chapter.	We	try	to	present	only	one	new	concept	per	atom.
A	typical	atom	contains	one	or	more	small,	runnable	pieces	of	code	and	the
output	it	produces.

2.	 No	forward	references.	As	much	as	possible,	we	avoid	saying,	“These
features	are	explained	in	a	later	atom.”

3.	 No	references	to	other	programming	languages.	We	do	so	only	when
necessary.	An	analogy	to	a	feature	in	a	language	you	don’t	understand	isn’t



helpful.
4.	 Show	don’t	tell.	Instead	of	verbally	describing	a	feature,	we	prefer

examples	and	output.	It’s	better	to	see	a	feature	in	code.
5.	 Practice	before	theory.	We	try	to	show	the	mechanics	of	the	language	first,

then	tell	why	those	features	exist.	This	is	backwards	from	“traditional”
teaching,	but	it	often	seems	to	work	better.

If	you	know	the	features,	you	can	work	out	the	meaning.	It’s	usually	easier	to
understand	a	single	page	of	Kotlin	than	it	is	to	understand	the	equivalent	code	in
another	language.

Where	Is	the	Index?
This	book	is	written	in	Markdown	and	produced	with	Leanpub.	Unfortunately,
neither	Markdown	nor	Leanpub	supports	indexes.	However,	by	creating	the
smallest-possible	chapters	(atoms)	consisting	of	a	single	topic	in	each	atom,	the
table	of	contents	acts	as	a	kind	of	index.	In	addition,	the	eBook	versions	allow
for	electronic	searching	across	the	book.

Cross-References
A	reference	to	an	atom	in	the	book	looks	like	this:	Introduction,	which	in	this
case	refers	to	the	current	atom.	In	the	various	eBook	formats,	this	produces	a
hyperlink	to	that	atom.

Formatting
In	this	book:

Italics	introduce	a	new	term	or	concept,	and	sometimes	emphasize	an	idea.
Fixed-width	font	indicates	program	keywords,	identifiers	and	file	names.
The	code	examples	are	also	in	this	font,	and	are	colorized	in	the	eBook
versions	of	the	book.
In	prose,	we	follow	a	function	name	with	empty	parentheses,	as	in	func().
This	reminds	the	reader	they	are	looking	at	a	function.
To	make	the	eBook	easy	to	read	on	all	devices	and	allow	the	user	to
increase	the	font	size,	we	limit	our	code	listing	width	to	47	characters.	At
times	this	requires	compromise,	but	we	feel	the	results	are	worth	it.	To
achieve	these	widths	we	may	remove	spaces	that	might	otherwise	be



included	in	many	formatting	styles—in	particular,	we	use	two-space	indents
rather	than	the	standard	four	spaces.

Sample	the	Book
We	provide	a	free	sample	of	the	electronic	book	at	AtomicKotlin.com.	The
sample	includes	the	first	two	sections	in	their	entirety,	along	with	several
subsequent	atoms.	This	way	you	can	try	out	the	book	and	decide	if	it’s	a	good	fit
for	you.

The	complete	book	is	for	sale,	both	as	a	print	book	and	an	eBook.	If	you	like
what	we’ve	done	in	the	free	sample,	please	support	us	and	help	us	continue	our
work	by	paying	for	what	you	use.	We	hope	the	book	helps,	and	we	appreciate
your	sponsorship.

In	the	age	of	the	Internet,	it	doesn’t	seem	possible	to	control	any	piece	of
information.	You’ll	probably	find	the	electronic	version	of	this	book	in	numerous
places.	If	you	are	unable	to	pay	for	the	book	right	now	and	you	do	download	it
from	one	of	these	sites,	please	“pay	it	forward.”	For	example,	help	someone	else
learn	the	language	once	you’ve	learned	it.	Or	help	someone	in	any	way	they
need.	Perhaps	in	the	future	you’ll	be	better	off,	and	then	you	can	pay	for	the
book.

Exercises	and	Solutions
Most	atoms	in	Atomic	Kotlin	are	accompanied	by	a	handful	of	small	exercises.
To	improve	your	understanding,	we	recommend	solving	the	exercises
immediately	after	reading	the	atom.	Most	of	the	exercises	are	checked
automatically	by	the	JetBrains	IntelliJ	IDEA	integrated	development
environment	(IDE),	so	you	can	see	your	progress	and	get	hints	if	you	get	stuck.

You	can	find	the	following	links	at	http://AtomicKotlin.com/exercises/.

To	solve	the	exercises,	install	IntelliJ	IDEA	with	the	Edu	Tools	plugin	by
following	these	tutorials:

1.	 Install	IntelliJ	IDEA	and	the	EduTools	Plugin.
2.	 Open	the	Atomic	Kotlin	course	and	solve	the	exercises.

http://AtomicKotlin.com
http://AtomicKotlin.com/exercises/
https://www.jetbrains.com/help/education/install-edutools-plugin.html
https://www.jetbrains.com/help/education/learner-start-guide.html?section=Atomic%20Kotlin


In	the	course,	you’ll	find	solutions	for	all	exercises.	If	you’re	stuck	on	an
exercise,	check	for	hints	or	try	peeking	at	the	solution.	We	still	recommend
implementing	it	yourself.

If	you	have	any	problems	setting	up	and	running	the	course,	please	read	The
Troubleshooting	Guide.	If	that	doesn’t	solve	your	problem,	please	contact	the
support	team	as	mentioned	in	the	guide.

If	you	find	a	mistake	in	the	course	content	(for	example,	a	test	for	a	task
produces	the	wrong	result),	please	use	our	issue	tracker	to	report	the	problem
with	this	prefilled	form.	Note	that	you’ll	need	to	log	in	into	YouTrack.	We
appreciate	your	time	in	helping	to	improve	the	course!

Seminars
You	can	find	information	about	live	seminars	and	other	learning	tools	at
AtomicKotlin.com.

Conferences
Bruce	creates	Open-Spaces	conferences	such	as	the	Winter	Tech	Forum.	Join	the
mailing	list	at	AtomicKotlin.com	to	stay	informed	about	our	activities	and	where
we	are	speaking.

Support	Us
This	was	a	big	project.	It	took	time	and	effort	to	produce	this	book	and
accompanying	support	materials.	If	you	enjoy	this	book	and	want	to	see	more
things	like	it,	please	support	us:

Blog,	tweet,	etc.	and	tell	your	friends.	This	is	a	grassroots	marketing
effort	so	everything	you	do	will	help.
Purchase	an	eBook	or	print	version	of	this	book	at	AtomicKotlin.com.
Check	AtomicKotlin.com	for	other	support	products	or	events.

About	Us
Bruce	Eckel	is	the	author	of	the	multi-award-winning	Thinking	in	Java	and
Thinking	in	C++,	and	a	number	of	other	books	on	computer	programming
including	Atomic	Scala.	He’s	given	hundreds	of	presentations	throughout	the
world	and	puts	on	alternative	conferences	and	events	like	the	Winter	Tech	Forum

https://www.jetbrains.com/help/education/troubleshooting-guide.html
https://youtrack.jetbrains.com/newIssue?project=EDC&summary=AtomicKotlin%3A&c=Subsystem%20Kotlin&c=
http://www.WinterTechForum.com
http://www.atomicscala.com/
http://www.WinterTechForum.com
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Why	Kotlin?

We	give	an	overview	of	the	historical	development	of	programming
languages	so	you	can	understand	where	Kotlin	fits	and	why	you	might	want
to	learn	it.	This	atom	introduces	some	topics	which,	if	you	are	a	novice,
might	seem	too	complicated	right	now.	Feel	free	to	skip	this	atom	and	come
back	to	it	after	you’ve	read	more	of	the	book.

Programs	must	be	written	for	people	to	read,	and	only	incidentally	for	machines
to	execute.—Harold	Abelson,	Structure	and	Interpretation	of	Computer
Programs

Programming	language	design	is	an	evolutionary	path	from	serving	the	needs	of
the	machine	to	serving	the	needs	of	the	programmer.

A	programming	language	is	invented	by	a	language	designer	and	implemented
as	one	or	more	programs	that	act	as	tools	for	using	the	language.	The
implementer	is	usually	the	language	designer,	at	least	initially.

Early	languages	focused	on	hardware	limitations.	As	computers	become	more
powerful,	newer	languages	shift	toward	more	sophisticated	programming	with
an	emphasis	on	reliability.	These	languages	can	choose	features	based	on	the
psychology	of	programming.

Every	programming	language	is	a	collection	of	experiments.	Historically,
programming	language	design	has	been	a	succession	of	guesses	and	assumptions
about	what	will	make	programmers	more	productive.	Some	of	those	experiments
fail,	some	are	mildly	successful	and	some	are	very	successful.

We	learn	from	the	experiments	in	each	new	language.	Some	languages	address
issues	that	turn	out	to	be	incidental	rather	than	essential,	or	the	environment
changes	(faster	processors,	cheaper	memory,	new	understanding	of	programming
and	languages)	and	that	issue	becomes	less	important	or	even	inconsequential.	If
those	ideas	become	obsolete	and	the	language	doesn’t	evolve,	it	fades	from	use.



The	original	programmers	worked	directly	with	numbers	representing	processor
machine	instructions.	This	approach	produced	numerous	errors,	and	assembly
language	was	created	to	replace	the	numbers	with	mnemonic	opcodes—words
that	programmers	could	more	easily	remember	and	read,	along	with	other
helpful	tools.	However,	there	was	still	a	one-to-one	correspondence	between
assembly-language	instructions	and	machine	instructions,	and	programmers	had
to	write	each	line	of	assembly	code.	In	addition,	each	computer	processor	used
its	own	distinct	assembly	language.

Developing	programs	in	assembly	language	is	exceedingly	expensive.	Higher-
level	languages	help	solve	that	problem	by	creating	a	level	of	abstraction	away
from	low-level	assembly	languages.

Compilers	and	Interpreters
Kotlin	is	compiled	rather	than	interpreted.	The	instructions	of	an	interpreted
language	are	executed	directly	by	a	separate	program	called	an	interpreter.	In
contrast,	the	source	code	of	a	compiled	language	is	converted	into	a	different
representation	that	runs	as	its	own	program,	either	directly	on	a	hardware
processor	or	on	a	virtual	machine	that	emulates	a	processor:

Languages	such	as	C,	C++,	Go	and	Rust	compile	into	machine	code	that	runs
directly	on	the	underlying	hardware	central	processing	unit	(CPU).	Languages
like	Java	and	Kotlin	compile	into	bytecode	which	is	an	intermediate-level	format



that	doesn’t	run	directly	on	the	hardware	CPU,	but	instead	on	a	virtual	machine,
which	is	a	program	that	executes	bytecode	instructions.	The	JVM	version	of
Kotlin	runs	on	the	Java	Virtual	Machine	(JVM).

Portability	is	an	important	benefit	of	a	virtual	machine.	The	same	bytecode	can
run	on	every	computer	that	has	a	virtual	machine.	Virtual	machines	can	be
optimized	for	particular	hardware	and	to	solve	speed	problems.	The	JVM
contains	many	years	of	such	optimizations,	and	has	been	implemented	on	many
platforms.

At	compile	time,	the	code	is	checked	by	the	compiler	to	discover	compile-time
errors.	(IntelliJ	IDEA	and	other	development	environments	highlight	these	errors
when	you	input	the	code,	so	you	can	quickly	discover	and	fix	any	problems).	If
there	are	no	compile-time	errors,	the	source	code	will	be	compiled	into	bytecode.

A	runtime	error	cannot	be	detected	at	compile	time,	so	it	only	emerges	when	you
run	the	program.	Typically,	runtime	errors	are	more	difficult	to	discover	and
more	expensive	to	fix.	Statically-typed	languages	like	Kotlin	discover	as	many
errors	as	possible	at	compile	time,	while	dynamic	languages	perform	their	safety
checks	at	runtime	(some	dynamic	languages	don’t	perform	as	many	safety
checks	as	they	might).

Languages	that	Influenced	Kotlin
Kotlin	draws	its	ideas	and	features	from	many	languages,	and	those	languages
were	influenced	by	earlier	languages.	It’s	helpful	to	know	some	programming-
language	history	to	gain	perspective	on	how	we	got	to	Kotlin.	The	languages
described	here	are	chosen	for	their	influence	on	the	languages	that	followed
them.	All	these	languages	ultimately	inspired	the	design	of	Kotlin,	sometimes	by
being	an	example	of	what	not	to	do.

FORTRAN:	FORmula	TRANslation	(1957)
Designed	for	use	by	scientists	and	engineers,	Fortran’s	goal	was	to	make	it	easier
to	encode	equations.	Finely-tuned	and	tested	Fortran	libraries	are	still	in	use
today,	but	they	are	typically	“wrapped”	to	make	them	callable	from	other
languages.

LISP:	LISt	Processor	(1958)



Rather	than	being	application-specific,	LISP	embodied	essential	programming
concepts;	it	was	the	computer	scientist’s	language	and	the	first	functional
programming	language	(You’ll	learn	about	functional	programming	in	this
book).	The	tradeoff	for	its	power	and	flexibility	was	efficiency:	LISP	was
typically	too	expensive	to	run	on	early	machines,	and	only	in	recent	decades
have	machines	become	fast	enough	to	produce	a	resurgence	in	the	use	of	LISP.
For	example,	the	GNU	Emacs	editor	is	written	entirely	in	LISP,	and	can	be
extended	using	LISP.

ALGOL:	ALGOrithmic	Language	(1958)
Arguably	the	most	influential	of	the	1950’s	languages	because	it	introduced
syntax	that	persisted	in	many	subsequent	languages.	For	example,	C	and	its
derivatives	are	“ALGOL-like”	languages.

COBOL:	COmmon	Business-Oriented	Language	(1959)
Designed	for	business,	finance,	and	administrative	data	processing.	It	has	an
English-like	syntax,	and	was	intended	to	be	self-documenting	and	highly
readable.	Although	this	intent	generally	failed—COBOL	is	famous	for	bugs
introduced	by	a	misplaced	period—the	US	Department	of	Defense	forced
widespread	adoption	on	mainframe	computers,	and	systems	are	still	running
(and	requiring	maintenance)	today.

BASIC:	Beginners’	All-purpose	Symbolic	Instruction	Code
(1964)
BASIC	was	one	of	the	early	attempts	to	make	programming	accessible.	While
very	successful,	its	features	and	syntax	were	limited,	so	it	was	only	partly
helpful	for	people	who	needed	to	learn	more	sophisticated	languages.	It	is
predominantly	an	interpreted	language,	which	means	that	to	run	it	you	need	the
original	code	for	the	program.	Despite	that,	many	useful	programs	were	written
in	BASIC,	in	particular	as	a	scripting	language	for	Microsoft’s	“Office”
products.	BASIC	might	even	be	thought	of	as	the	first	“open”	programming
language,	as	people	made	numerous	variations	of	it.

Simula	67,	the	Original	Object-Oriented	Language	(1967)
A	simulation	typically	involves	many	“objects”	interacting	with	each	other.
Different	objects	have	different	characteristics	and	behaviors.	Languages	that



existed	at	the	time	were	awkward	to	use	for	simulations,	so	Simula	(another
“ALGOL-like”	language)	was	developed	to	provide	direct	support	for	creating
simulation	objects.	It	turns	out	that	these	ideas	are	also	useful	for	general-
purpose	programming,	and	this	was	the	genesis	of	Object-Oriented	(OO)
languages.

Pascal	(1970)
Pascal	increased	compilation	speed	by	restricting	the	language	so	it	could	be
implemented	as	a	single-pass	compiler.	The	language	forced	the	programmer	to
structure	their	code	in	a	particular	way	and	imposed	somewhat	awkward	and
less-readable	constraints	on	program	organization.	As	processors	became	faster,
memory	cheaper,	and	compiler	technology	better,	the	impact	of	these	constraints
became	too	costly.

An	implementation	of	Pascal,	Turbo	Pascal	from	Borland,	initially	worked	on
CP/M	machines	and	then	made	the	move	to	early	MS-DOS	(precursor	to
Windows),	later	evolving	into	the	Delphi	language	for	Windows.	By	putting
everything	in	memory,	Turbo	Pascal	compiled	at	lightning	speeds	on	very
underpowered	machines,	dramatically	improving	the	programming	experience.
Its	creator,	Anders	Hejlsberg,	later	went	on	to	design	both	C#	and	TypeScript.

Niklaus	Wirth,	the	inventor	of	Pascal,	created	subsequent	languages:	Modula,
Modula-2	and	Oberon.	As	the	name	implies,	Modula	focused	on	dividing
programs	into	modules,	for	better	organization	and	faster	compilation.	Most
modern	languages	support	separate	compilation	and	some	form	of	module
system.

C	(1972)
Despite	the	increasing	number	of	higher-level	languages,	programmers	were	still
writing	assembly	language.	This	is	often	called	systems	programming,	because	it
is	done	at	the	level	of	the	operating	system,	but	it	also	includes	embedded
programming	for	dedicated	physical	devices.	This	is	not	only	arduous	and
expensive	(Bruce	began	his	career	writing	assembly	language	for	embedded
systems),	but	it	isn’t	portable—assembly	language	can	only	run	on	the	processor
it	is	written	for.	C	was	designed	to	be	a	“high-level	assembly	language”	that	is
still	close	enough	to	the	hardware	that	you	rarely	need	to	write	assembly.	More
importantly,	a	C	program	runs	on	any	processor	with	a	C	compiler.	C	decoupled
the	program	from	the	processor,	which	solved	a	huge	and	expensive	problem.	As



a	result,	former	assembly-language	programmers	could	be	vastly	more
productive	in	C.	C	has	been	so	effective	that	recent	languages	(notably	Go	and
Rust)	are	still	attempting	to	usurp	it	for	systems	programming.

Smalltalk	(1972)
Designed	from	the	beginning	to	be	purely	object-oriented,	Smalltalk
significantly	moved	OO	and	language	theory	forward	by	being	a	platform	for
experimentation	and	demonstrating	rapid	application	development.	However,	it
was	created	when	languages	were	still	proprietary,	and	the	entry	price	for	a
Smalltalk	system	could	be	in	the	thousands.	It	was	interpreted,	so	you	needed	a
Smalltalk	environment	to	run	programs.	Open-source	Smalltalk	implementations
did	not	appear	until	after	the	programming	world	had	moved	on.	Smalltalk
programmers	have	contributed	great	insights	benefitting	later	OO	languages	like
C++	and	Java.

C++:	A	Better	C	with	Objects	(1983)
Bjarne	Stroustrup	created	C++	because	he	wanted	a	better	C	and	he	wanted
support	for	the	object-oriented	constructs	he	had	experienced	while	using
Simula-67.	Bruce	was	a	member	of	the	C++	Standards	Committee	for	its	first
eight	years,	and	wrote	three	books	on	C++	including	Thinking	in	C++.

Backwards-compatibility	with	C	was	a	foundational	principle	of	C++	design,	so
C	code	can	be	compiled	in	C++	with	virtually	no	changes.	This	provided	an	easy
migration	path—programmers	could	continue	to	program	in	C,	receive	the
benefits	of	C++,	and	slowly	experiment	with	C++	features	while	still	being
productive.	Most	criticisms	of	C++	can	be	traced	to	the	constraint	of	backwards
compatibility	with	C.

One	of	the	problems	with	C	was	the	issue	of	memory	management.	The
programmer	must	first	acquire	memory,	then	run	an	operation	using	that
memory,	then	release	the	memory.	Forgetting	to	release	memory	is	called	a
memory	leak	and	can	result	in	using	up	the	available	memory	and	crashing	the
process.	The	initial	version	of	C++	made	some	innovations	in	this	area,	along
with	constructors	to	ensure	proper	initialization.	Later	versions	of	the	language
have	made	significant	improvements	in	memory	management.

Python:	Friendly	and	Flexible	(1990)



Python’s	designer,	Guido	Van	Rossum,	created	the	language	based	on	his
inspiration	of	“programming	for	everyone.”	His	nurturing	of	the	Python
community	has	given	it	the	reputation	of	being	the	friendliest	and	most
supportive	community	in	the	programming	world.	Python	was	one	of	the	first
open-source	languages,	resulting	in	implementations	on	virtually	every	platform
including	embedded	systems	and	machine	learning.	Its	dynamism	and	ease-of-
use	makes	it	ideal	for	automating	small,	repetitive	tasks	but	its	features	also
support	the	creation	of	large,	complex	programs.

Python	is	a	true	“grass-roots”	language;	it	never	had	a	company	promoting	it	and
the	attitude	of	its	fans	was	to	never	push	the	language,	but	simply	to	help	anyone
learn	it	who	wants	to.	The	language	continues	to	steadily	improve,	and	in	recent
years	its	popularity	has	skyrocketed.

Python	may	have	been	the	first	mainstream	language	to	combine	functional	and
OO	programming.	It	predated	Java	with	automatic	memory	management	using
garbage	collection	(you	typically	never	have	to	allocate	or	release	memory
yourself)	and	the	ability	to	run	programs	on	multiple	platforms.

Haskell:	Pure	Functional	Programming	(1990)
Inspired	by	Miranda	(1985),	a	proprietary	language,	Haskell	was	created	as	an
open	standard	for	pure	functional	programming	research,	although	it	has	also
been	used	for	products.	Syntax	and	ideas	from	Haskell	have	influenced	a	number
of	subsequent	languages	including	Kotlin.

Java:	Virtual	Machines	and	Garbage	Collection	(1995)
James	Gosling	and	his	team	were	given	the	task	of	writing	code	for	a	TV	set-top
box.	They	decided	they	didn’t	like	C++	and	instead	of	creating	the	box,	created
the	Java	language.	The	company,	Sun	Microsystems,	put	an	enormous	marketing
push	behind	the	free	language	(still	a	new	idea	at	the	time)	to	attempt	domination
of	the	emerging	Internet	landscape.

This	perceived	time	window	for	Internet	domination	put	a	lot	of	pressure	on	Java
language	design,	resulting	in	a	significant	number	of	flaws	(The	book	Thinking
in	Java	illuminates	these	flaws	so	readers	are	prepared	to	cope	with	them).	Brian
Goetz	at	Oracle,	the	current	lead	developer	of	Java,	has	made	remarkable	and
surprising	improvements	in	Java	despite	the	constraints	he	inherited.	Although



Java	was	remarkably	successful,	an	important	Kotlin	design	goal	is	to	fix	Java’s
flaws	so	programmers	can	be	more	productive.

Java’s	success	came	from	two	innovative	features:	a	virtual	machine	and
garbage	collection.	These	were	available	in	other	languages—for	example,
LISP,	Smalltalk	and	Python	have	garbage	collection	and	UCSD	Pascal	ran	on	a
virtual	machine—but	they	were	never	considered	practical	for	mainstream
languages.	Java	changed	that,	and	in	doing	so	made	programmers	significantly
more	productive.

A	virtual	machine	is	an	intermediate	layer	between	the	language	and	the
hardware.	The	language	doesn’t	have	to	generate	machine	code	for	a	particular
processor;	it	only	needs	to	generate	an	intermediate	language	(bytecode)	that
runs	on	the	virtual	machine.	Virtual	machines	require	processing	power	and,
before	Java,	were	believed	to	be	impractical.	The	Java	Virtual	Machine	(JVM)
gave	rise	to	Java’s	slogan	“write	once,	run	everywhere.”	In	addition,	other
languages	can	be	more	easily	developed	by	targeting	the	JVM;	examples	include
Groovy,	a	Java-like	scripting	language,	and	Clojure,	a	version	of	LISP.

Garbage	collection	solves	the	problem	of	forgetting	to	release	memory,	or	when
it’s	difficult	to	know	when	a	piece	of	storage	is	no	longer	used.	Projects	have
been	significantly	delayed	or	even	cancelled	because	of	memory	leaks.	Although
garbage	collection	appears	in	some	prior	languages,	it	was	believed	to	produce
an	unacceptable	amount	of	overhead	until	Java	demonstrated	its	practicality.

JavaScript:	Java	in	Name	Only	(1995)
The	original	Web	browser	simply	copied	and	displayed	pages	from	a	Web	server.
Web	browsers	proliferated,	becoming	a	new	programming	platform	that	needed
language	support.	Java	wanted	to	be	this	language	but	was	too	awkward	for	the
job.	JavaScript	began	as	LiveScript	and	was	built	into	NetScape	Navigator,	one
of	the	first	Web	browsers.	Renaming	it	to	JavaScript	was	a	marketing	ploy	by
NetScape,	as	the	language	has	only	a	vague	similarity	to	Java.

As	the	Web	took	off,	JavaScript	became	tremendously	important.	However,	the
behavior	of	JavaScript	was	so	unpredictable	that	Douglas	Crockford	wrote	a
book	with	the	tongue-in-cheek	title	JavaScript,	the	Good	Parts,	where	he
demonstrated	all	the	problems	with	the	language	so	programmers	could	avoid
them.	Subsequent	improvements	by	the	ECMAScript	committee	have	made



JavaScript	unrecognizeable	to	an	original	JavaScript	programmer.	It	is	now
considered	a	stable	and	mature	language.

Web	assembly	(WASM)	was	derived	from	JavaScript	to	be	a	kind	of	bytecode	for
web	browsers.	It	often	runs	much	faster	than	JavaScript	and	can	be	generated	by
other	languages.	At	this	writing,	the	Kotlin	team	is	working	to	add	WASM	as	a
target.

C#:	Java	for	.NET	(2000)
C#	was	designed	to	provide	some	of	the	important	abilities	of	Java	on	the	.NET
(Windows)	platform,	while	freeing	designers	from	the	constraint	of	following
the	Java	language.	The	result	included	numerous	improvements	over	Java.	For
example,	C#	developed	the	concept	of	extension	functions,	which	are	heavily
used	in	Kotlin.	C#	also	became	significantly	more	functional	than	Java.	Many
C#	features	clearly	influenced	Kotlin	design.

Scala:	SCALAble	(2003)
Martin	Odersky	created	Scala	to	run	on	the	Java	virtual	machine:	To	piggyback
on	the	work	done	on	the	JVM,	to	interact	with	Java	programs,	and	possibly	with
the	idea	that	it	might	displace	Java.	As	a	researcher,	Odersky	and	his	team	used
Scala	as	a	platform	to	experiment	with	language	features,	notably	those	not
included	in	Java.

These	experiments	were	illuminating	and	a	number	of	them	found	their	way	into
Kotlin,	usually	in	a	modified	form.	For	example,	the	ability	to	redefine	operators
like	+	for	use	in	special	cases	is	called	operator	overloading.	This	was	included
in	C++	but	not	Java.	Scala	added	operator	overloading	but	also	allows	you	to
invent	new	operators	by	combining	any	sequence	of	characters.	This	often
produces	confusing	code.	A	limited	form	of	operator	overloading	is	included	in
Kotlin,	but	you	can	only	overload	operators	that	already	exist.

Scala	is	also	an	object-functional	hybrid,	like	Python	but	with	a	focus	on	pure
functions	and	strict	objects.	This	helped	inspire	Kotlin’s	choice	to	also	be	an
object-functional	hybrid.

Like	Scala,	Kotlin	runs	on	the	JVM	but	it	interacts	with	Java	far	more	easily	than
Scala	does.	In	addition,	Kotlin	targets	JavaScript,	the	Android	OS,	and	it
generates	native	code	for	other	platforms.



Atomic	Kotlin	evolved	from	the	ideas	and	material	in	Atomic	Scala.

Groovy:	A	Dynamic	JVM	Language	(2007)
Dynamic	languages	are	appealing	because	they	are	more	interactive	and	concise
than	static	languages.	There	have	been	numerous	attempts	to	produce	a	more
dynamic	programming	experience	on	the	JVM,	including	Jython	(Python)	and
Clojure	(a	dialect	of	Lisp).	Groovy	was	the	first	to	achieve	wide	acceptance.

At	first	glance,	Groovy	appears	to	be	a	cleaned-up	version	of	Java,	producing	a
more	pleasant	programming	experience.	Most	Java	code	will	run	unchanged	in
Groovy,	so	Java	programmers	can	be	quickly	productive,	later	learning	the	more
sophisticated	features	that	provide	notable	programming	improvements	over
Java.

The	Kotlin	operators	?.	and	?:	that	deal	with	the	problem	of	emptiness	first
appeared	in	Groovy.

There	are	numerous	Groovy	features	that	are	recognizeable	in	Kotlin.	Some	of
those	features	also	appear	in	other	languages,	which	probably	pushed	harder	for
them	to	be	included	in	Kotlin.

Why	Kotlin?	(Introduced	2011,	Version	1.0:	2016)
Just	as	C++	was	initially	intended	to	be	“a	better	C,”	Kotlin	was	initially
oriented	towards	being	“a	better	Java.”	It	has	since	evolved	significantly	beyond
that	goal.

Kotlin	pragmatically	chooses	only	the	most	successful	and	helpful	features	from
other	programming	languages—after	those	features	have	been	field-tested	and
proven	especially	valuable.

Thus,	if	you	are	coming	from	another	language,	you	might	recognize	some
features	of	that	language	in	Kotlin.	This	is	intentional:	Kotlin	maximizes
productivity	by	leveraging	tested	concepts.

Readability
Readability	is	a	primary	goal	in	the	design	of	the	language.	Kotlin	syntax	is
concise—it	requires	no	ceremony	for	most	scenarios,	but	can	still	express
complex	ideas.

http://www.AtomicScala.com


Tooling
Kotlin	comes	from	JetBrains,	a	company	that	specializes	in	developer	tooling.	It
has	first-class	tooling	support,	and	many	language	features	were	designed	with
tooling	in	mind.

Multi-Paradigm
Kotlin	supports	multiple	programming	paradigms,	which	are	gently	introduced
in	this	book:

Imperative	programming
Functional	programming
Object-oriented	programming

Multi-Platform
Kotlin	source	code	can	be	compiled	to	different	target	platforms:

JVM.	The	source	code	compiles	into	JVM	bytecode	(.class	files),	which
can	then	be	run	on	any	Java	Virtual	Machine	(JVM).
Android.	Android	its	own	runtime	called	ART	(the	predecessor	was	called
Dalvik).	The	Kotlin	source	code	is	compiled	into	Dalvik	Executable	Format
(.dex	files).
JavaScript,	to	run	inside	a	web	browser.
Native	Binaries	by	generating	machine	code	for	specific	platforms	and
CPUs.

This	book	focuses	on	the	language	itself,	using	the	JVM	as	the	only	target
platform.	Once	you	know	the	language,	you	can	apply	Kotlin	to	different
application	and	target	platforms.

Two	Kotlin	Features
This	atom	does	not	assume	you	are	a	programmer,	which	makes	it	hard	to
explain	most	of	the	benefits	of	Kotlin	over	the	alternatives.	There	are,	however,
two	topics	which	are	very	impactful	and	can	be	explained	at	this	early	juncture:
Java	interoperability	and	the	issue	of	indicating	“no	value.”

Effortless	Java	Interoperability

https://source.android.com/devices/tech/dalvik


To	be	“a	better	C,”	C++	must	be	backwards	compatible	with	the	syntax	of	C,	but
Kotlin	does	not	have	to	be	backwards	compatible	with	the	syntax	of	Java—it
only	needs	to	work	with	the	JVM.	This	frees	the	Kotlin	designers	to	create	a
much	cleaner	and	more	powerful	syntax,	without	the	visual	noise	and
complication	that	clutters	Java.

For	Kotlin	to	be	“a	better	Java,”	the	experience	of	trying	it	must	be	pleasant	and
frictionless,	so	Kotlin	enables	effortless	integration	with	existing	Java	projects.
You	can	write	a	small	piece	of	Kotlin	functionality	and	slip	it	in	amidst	your
existing	Java	code.	The	Java	code	doesn’t	even	know	the	Kotlin	code	is	there—it
just	looks	like	more	Java	code.

Companies	often	investigate	a	new	language	by	building	a	standalone	program
with	that	language.	Ideally,	this	program	is	beneficial	but	nonessential,	so	if	the
project	fails	it	can	be	terminated	with	minimal	damage.	Not	every	company
wants	to	spend	the	kind	of	resources	necessary	for	this	type	of	experimentation.
Because	Kotlin	seamlessly	integrates	into	an	existing	Java	system	(and	benefits
from	that	system’s	tests),	it	becomes	very	cheap	or	even	free	to	try	Kotlin	to	see
whether	it’s	a	good	fit.

In	addition,	JetBrains,	the	company	that	creates	Kotlin,	provides	IntelliJ	IDEA	in
a	“Community”	(free)	version,	which	includes	support	for	both	Java	and	Kotlin
along	with	the	ability	to	easily	integrate	the	two.	It	even	has	a	tool	that	takes
Java	code	and	(mostly)	rewrites	it	to	Kotlin.

Appendix	B	covers	Java	interoperability.

Representing	Emptiness
An	especially	beneficial	Kotlin	feature	is	its	solution	to	a	challenging
programming	problem.

What	do	you	do	when	someone	hands	you	a	dictionary	and	asks	you	to	look	up	a
word	that	doesn’t	exist?	You	could	guarantee	results	by	making	up	definitions
for	unknown	words.	A	more	useful	approach	is	just	to	say,	“There’s	no	definition
for	that	word.”	This	demonstrates	a	significant	problem	in	programming:	How
do	you	indicate	“no	value”	for	a	piece	of	storage	that	is	uninitialized,	or	for	the
result	of	an	operation?



The	null	reference	was	invented	in	1965	for	ALGOL	by	Tony	Hoare,	who	later
called	it	“my	billion-dollar	mistake.”	One	problem	was	that	it	was	too	simple—
sometimes	being	told	a	room	is	empty	isn’t	enough;	you	might	need	to	know,	for
example,	why	it	is	empty.	This	leads	to	the	second	problem:	the	implementation.
For	efficiency’s	sake,	it	was	typically	just	a	special	value	that	could	fit	in	a	small
amount	of	memory,	and	what	better	than	the	memory	already	allocated	for	that
information?

The	original	C	language	did	not	automatically	initialize	storage,	which	caused
numerous	problems.	C++	improved	the	situation	by	setting	newly-allocated
storage	to	all	zeroes.	Thus,	if	a	numerical	value	isn’t	initialized,	it	is	simply	a
numerical	zero.	This	didn’t	seem	so	bad	but	it	allowed	uninitialized	values	to
quietly	slip	through	the	cracks	(newer	C	and	C++	compilers	often	warn	you
about	these).	Worse,	if	a	piece	of	storage	was	a	pointer—used	to	indicate	(“point
to”)	another	piece	of	storage—a	null	pointer	would	point	at	location	zero	in
memory,	which	is	almost	certainly	not	what	you	want.

Java	prevents	accesses	to	uninitialized	values	by	reporting	such	errors	at
runtime.	Although	this	discovers	uninitialized	values,	it	doesn’t	solve	the
problem	because	the	only	way	you	can	verify	that	your	program	won’t	crash	is
by	running	it.	There	are	swarms	of	these	kinds	of	bugs	in	Java	code,	and
programmers	waste	huge	amounts	of	time	finding	them.

Kotlin	solves	this	problem	by	preventing	operations	that	might	cause	null	errors
at	compile	time,	before	the	program	can	run.	This	is	the	single-most	celebrated
feature	by	Java	programmers	adopting	Kotlin.	This	one	feature	can	minimize	or
eliminate	Java’s	null	errors.

An	Abundance	of	Benefits
The	two	features	we	were	able	to	explain	here	(without	requiring	more
programming	knowledge)	make	a	huge	difference	whether	or	not	you’re	a	Java
programmer.	If	Kotlin	is	your	first	language	and	you	end	up	on	a	project	that
needs	more	programmers,	it	is	much	easier	to	recruit	one	of	the	many	existing
Java	programmers	into	Kotlin.

Kotlin	has	many	other	benefits,	which	we	cannot	explain	until	you	know	more
about	programming.	That’s	what	the	rest	of	the	book	is	for.

-



Languages	are	often	selected	by	passion,	not	reason…	I’m	trying	to	make	Kotlin
a	language	that	is	loved	for	a	reason.—Andrey	Breslav,	Kotlin	Lead	Language
Designer.



Hello,	World!

“Hello,	world!”	is	a	program	commonly	used	to	demonstrate	the	basic
syntax	of	programming	languages.

We	develop	this	program	in	several	steps	so	you	understand	its	parts.

First,	let’s	examine	an	empty	program	that	does	nothing	at	all:

//	HelloWorld/EmptyProgram.kt

fun	main()	{

		//	Program	code	here	...

}

The	example	starts	with	a	comment,	which	is	illuminating	text	that	is	ignored	by
Kotlin.	//	(two	forward	slashes)	begins	a	comment	that	goes	to	the	end	of	the
current	line:

//	Single-line	comment

Kotlin	ignores	the	//	and	everything	after	it	until	the	end	of	the	line.	On	the
following	line,	it	pays	attention	again.

The	first	line	of	each	example	in	this	book	is	a	comment	starting	with	the	name
of	the	the	subdirectory	containing	the	source-code	file	(Here,	HelloWorld)
followed	by	the	name	of	the	file:	EmptyProgram.kt.	The	example	subdirectory
for	each	atom	corresponds	to	the	name	of	that	atom.

keywords	are	reserved	by	the	language	and	given	special	meaning.	The	keyword
fun	is	short	for	function.	A	function	is	a	collection	of	code	that	can	be	executed
using	that	function’s	name	(we	spend	a	lot	of	time	on	functions	throughout	the
book).	The	function’s	name	follows	the	fun	keyword,	so	in	this	case	it’s	main()
(in	prose,	we	follow	the	function	name	with	parentheses).

main()	is	actually	a	special	name	for	a	function;	it	indicates	the	“entry	point”	for
a	Kotlin	program.	A	Kotlin	program	can	have	many	functions	with	many



different	names,	but	main()	is	the	one	that’s	automatically	called	when	you
execute	the	program.

The	parameter	list	follows	the	function	name	and	is	enclosed	by	parentheses.
Here,	we	don’t	pass	anything	into	main()	so	the	parameter	list	is	empty.

The	function	body	appears	after	the	parameter	list.	It	begins	with	an	opening
brace	({)	and	ends	with	a	closing	brace	(}).	The	function	body	contains
statements	and	expressions.	A	statement	produces	an	effect,	and	an	expression
yields	a	result.

EmptyProgram.kt	contains	no	statements	or	expressions	in	the	body,	just	a
comment.

Let’s	make	the	program	display	“Hello,	world!”	by	adding	a	line	in	the	main()
body:

//	HelloWorld/HelloWorld.kt

fun	main()	{

		println("Hello,	world!")

}

/*	Output:

Hello,	world!

*/

The	line	that	displays	the	greeting	begins	with	println().	Like	main(),
println()	is	a	function.	This	line	calls	the	function,	which	executes	its	body.
You	give	the	function	name,	followed	by	parentheses	containing	one	or	more
parameters.	In	this	book,	when	referring	to	a	function	in	the	prose,	we	add
parentheses	after	the	name	as	a	reminder	that	it	is	a	function.	Here,	we	say
println().

println()	takes	a	single	parameter,	which	is	a	String.	You	define	a	String	by
putting	characters	inside	quotes.

println()	moves	the	cursor	to	a	new	line	after	displaying	its	parameter,	so
subsequent	output	appears	on	the	next	line.	You	can	use	print()	instead,	which
leaves	the	cursor	on	the	same	line.

Unlike	some	languages,	you	don’t	need	a	semicolon	at	the	end	of	an	expression
in	Kotlin.	It’s	only	necessary	if	you	put	more	than	one	expression	on	a	single	line
(this	is	discouraged).



For	some	examples	in	the	book,	we	show	the	output	at	the	end	of	the	listing,
inside	a	multiline	comment.	A	multiline	comment	starts	with	a	/*	(a	forward
slash	followed	by	an	asterisk)	and	continues—including	line	breaks	(which	we
call	newlines)—until	a	*/	(an	asterisk	followed	by	a	forward	slash)	ends	the
comment:

/*	A	multiline	comment

Doesn't	care

about	newlines	*/

It’s	possible	to	add	code	on	the	same	line	after	the	closing	*/	of	a	comment,	but
it’s	confusing,	so	people	don’t	usually	do	it.

Comments	add	information	that	isn’t	obvious	from	reading	the	code.	If
comments	only	repeat	what	the	code	says,	they	become	annoying	and	people
start	ignoring	them.	When	code	changes,	programmers	often	forget	to	update
comments,	so	it’s	good	practice	to	use	comments	judiciously,	mainly	for
highlighting	tricky	aspects	of	your	code.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



var	&	val

When	an	identifier	holds	data,	you	must	decide	whether	it	can	be
reassigned.

You	create	identifiers	to	refer	to	elements	in	your	program.	The	most	basic
decision	for	a	data	identifier	is	whether	it	can	change	its	contents	during	program
execution,	or	if	it	can	only	be	assigned	once.	This	is	controlled	by	two	keywords:

var,	short	for	variable,	which	means	you	can	reassign	its	contents.
val,	short	for	value,	which	means	you	can	only	initialize	it;	you	cannot
reassign	it.

You	define	a	var	like	this:

var	identifier	=	initialization

The	var	keyword	is	followed	by	the	identifier,	an	equals	sign	and	then	the
initialization	value.	The	identifier	begins	with	a	letter	or	an	underscore,	followed
by	letters,	numbers	and	underscores.	Upper	and	lower	case	are	distinguished	(so
thisvalue	and	thisValue	are	different).

Here	are	some	var	definitions:

//	VarAndVal/Vars.kt

fun	main()	{

		var	whole	=	11														//	[1]

		var	fractional	=	1.4								//	[2]

		var	words	=	"Twas	Brillig"		//	[3]

		println(whole)

		println(fractional)

		println(words)

}

/*	Output:

11

1.4

Twas	Brillig

*/

In	this	book	we	mark	lines	with	commented	numbers	in	square	brackets	so	we
can	refer	to	them	in	the	text	like	this:



[1]	Create	a	var	named	whole	and	store	11	in	it.
[2]	Store	the	“fractional	number”	1.4	in	the	var	fractional.
[3]	Store	some	text	(a	String)	in	the	var	words.

Note	that	println()	can	take	any	single	value	as	an	argument.

As	the	name	variable	implies,	a	var	can	vary.	That	is,	you	can	change	the	data
stored	in	a	var.	We	say	that	a	var	is	mutable:

//	VarAndVal/AVarIsMutable.kt

fun	main()	{

		var	sum	=	1

		sum	=	sum	+	2

		sum	+=	3

		println(sum)

}

/*	Output:

6

*/

The	assignment	sum	=	sum	+	2	takes	the	current	value	of	sum,	adds	two,	and
assigns	the	result	back	into	sum.

The	assignment	sum	+=	3	means	the	same	as	sum	=	sum	+	3.	The	+=	operator
takes	the	previous	value	stored	in	sum	and	increases	it	by	3,	then	assigns	that	new
result	back	to	sum.

Changing	the	value	stored	in	a	var	is	a	useful	way	to	express	changes.	However,
when	the	complexity	of	a	program	increases,	your	code	is	clearer,	safer	and
easier	to	understand	if	the	values	represented	by	your	identifiers	cannot	change
—that	is,	they	cannot	be	reassigned.	We	specify	an	unchanging	identifier	using
the	val	keyword	instead	of	var.	A	val	can	only	be	assigned	once,	when	it	is
created:

val	identifier	=	initialization

The	val	keyword	comes	from	value,	indicating	something	that	cannot	change—
it	is	immutable.	Choose	val	instead	of	var	whenever	possible.	The	Vars.kt
example	at	the	beginning	of	this	atom	can	be	rewritten	using	vals:

//	VarAndVal/Vals.kt

fun	main()	{

		val	whole	=	11

		//	whole	=	15	//	Error			//	[1]

		val	fractional	=	1.4



		val	words	=	"Twas	Brillig"

		println(whole)

		println(fractional)

		println(words)

}

/*	Output:

11

1.4

Twas	Brillig

*/

[1]	Once	you	initialize	a	val,	you	can’t	reassign	it.	If	we	try	to	reassign
whole	to	a	different	number,	Kotlin	complains,	saying	“Val	cannot	be
reassigned.”

Choosing	descriptive	names	for	your	identifiers	makes	your	code	easier	to
understand	and	often	reduces	the	need	for	comments.	In	Vals.kt,	you	have	no
idea	what	whole	represents.	If	your	program	is	storing	the	number	11	to
represent	the	time	of	day	when	you	get	coffee,	it’s	more	obvious	to	others	if	you
name	it	coffeetime	and	easier	to	read	if	it’s	coffeeTime	(following	Kotlin	style,
we	make	the	first	letter	lowercase).

-

vars	are	useful	when	data	must	change	as	the	program	is	running.	This	sounds
like	a	common	requirement,	but	turns	out	to	be	avoidable	in	practice.	In	general,
your	programs	are	easier	to	extend	and	maintain	if	you	use	vals.	However,	on
rare	occasions	it’s	too	complex	to	solve	a	problem	using	only	vals.	For	that
reason,	Kotlin	gives	you	the	flexibility	of	vars.	However,	as	you	spend	more
time	with	vals	you’ll	discover	that	you	almost	never	need	vars	and	that	your
programs	are	safer	and	more	reliable	without	them.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Data	Types

Data	can	have	different	types.

To	solve	a	math	problem,	you	write	an	expression:

5.9	+	6

You	know	that	adding	those	numbers	produces	another	number.	Kotlin	knows
that	too.	You	know	that	one	is	a	fractional	number	(5.9),	which	Kotlin	calls	a
Double,	and	the	other	is	a	whole	number	(6),	which	Kotlin	calls	an	Int.	You
know	the	result	is	a	fractional	number.

A	type	(also	called	data	type)	tells	Kotlin	how	you	intend	to	use	that	data.	A	type
provides	a	set	of	values	from	which	an	expression	may	take	its	values.	A	type
defines	the	operations	that	can	be	performed	on	the	data,	the	meaning	of	the
data,	and	how	values	of	that	type	can	be	stored.

Kotlin	uses	types	to	verify	that	your	expressions	are	correct.	In	the	above
expression,	Kotlin	creates	a	new	value	of	type	Double	to	hold	the	result.

Kotlin	tries	to	adapt	to	what	you	need.	If	you	ask	it	to	do	something	that	violates
type	rules	it	produces	an	error	message.	For	example,	try	adding	a	String	and	a
number:

//	DataTypes/StringPlusNumber.kt

fun	main()	{

		println("Sally"	+	5.9)

}

/*	Output:

Sally5.9

*/

Types	tell	Kotlin	how	to	use	them	correctly.	In	this	case,	the	type	rules	tell	Kotlin
how	to	add	a	number	to	a	String:	by	appending	the	two	values	and	creating	a
String	to	hold	the	result.



Now	try	multiplying	a	String	and	a	Double	by	changing	the	+	in
StringPlusNumber.kt	to	a	*:

"Sally"	*	5.9

Combining	types	this	way	doesn’t	make	sense	to	Kotlin,	so	it	gives	you	an	error.

In	var	&	val,	we	stored	several	types.	Kotlin	figured	out	the	types	for	us,	based
on	how	we	used	them.	This	is	called	type	inference.

We	can	be	more	verbose	and	specify	the	type:

val	identifier:	Type	=	initialization

You	start	with	the	val	or	var	keyword,	followed	by	the	identifier,	a	colon,	the
type,	an	=,	and	the	initialization	value.	So	instead	of	saying:

val	n	=	1

var	p	=	1.2

You	can	say:

val	n:	Int	=	1

var	p:	Double	=	1.2

We’ve	told	Kotlin	that	n	is	an	Int	and	p	is	a	Double,	rather	than	letting	it	infer
the	type.

Here	are	some	of	Kotlin’s	basic	types:

//	DataTypes/Types.kt

fun	main()	{

		val	whole:	Int	=	11														//	[1]

		val	fractional:	Double	=	1.4					//	[2]

		val	trueOrFalse:	Boolean	=	true		//	[3]

		val	words:	String	=	"A	value"				//	[4]

		val	character:	Char	=	'z'								//	[5]

		val	lines:	String	=	"""Triple	quotes	let

you	have	many	lines

in	your	string"""																		//	[6]

		println(whole)

		println(fractional)

		println(trueOrFalse)

		println(words)

		println(character)

		println(lines)

}

/*	Output:

11



1.4

true

A	value

z

Triple	quotes	let

you	have	many	lines

in	your	string

*/

[1]	The	Int	data	type	is	an	integer,	which	means	it	only	holds	whole
numbers.
[2]	To	hold	fractional	numbers,	use	a	Double.
[3]	A	Boolean	data	type	only	holds	the	two	special	values	true	and	false.
[4]	A	String	holds	a	sequence	of	characters.	You	assign	a	value	using	a
double-quoted	String.
[5]	A	Char	holds	one	character.
[6]	If	you	have	many	lines	and/or	special	characters,	surround	them	with
triple-double-quotes	(this	is	a	triple-quoted	String).

Kotlin	uses	type	inference	to	determine	the	meaning	of	mixed	types.	When
mixing	Ints	and	Doubles	during	addition,	for	example,	Kotlin	decides	the	type
for	the	resulting	value:

//	DataTypes/Inference.kt

fun	main()	{

		val	n	=	1	+	1.2

		println(n)

}

/*	Output:

2.2

*/

When	you	add	an	Int	to	a	Double	using	type	inference,	Kotlin	determines	that
the	result	n	is	a	Double	and	ensures	that	it	follows	all	the	rules	for	Doubles.

Kotlin’s	type	inference	is	part	of	its	strategy	of	doing	work	for	the	programmer.
If	you	leave	out	the	type	declaration,	Kotlin	can	usually	infer	it.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Functions

A	function	is	like	a	small	program	that	has	its	own	name,	and	can	be
executed	(invoked)	by	calling	that	name	from	another	function.

A	function	combines	a	group	of	activities,	and	is	the	most	basic	way	to	organize
your	programs	and	to	re-use	code.

You	pass	information	into	a	function,	and	the	function	uses	that	information	to
calculate	and	produce	a	result.	The	basic	form	of	a	function	is:

fun	functionName(p1:	Type1,	p2:	Type2,	...):	ReturnType	{

		lines	of	code

		return	result

}

p1	and	p2	are	the	parameters:	the	information	you	pass	into	the	function.	Each
parameter	has	an	identifier	name	(p1,	p2)	followed	by	a	colon	and	the	type	of
that	parameter.	The	closing	parenthesis	of	the	parameter	list	is	followed	by	a
colon	and	the	type	of	result	produced	by	the	function.	The	lines	of	code	in	the
function	body	are	enclosed	in	curly	braces.	The	expression	following	the	return
keyword	is	the	result	the	function	produces	when	it’s	finished.

A	parameter	is	how	you	define	what	is	passed	into	a	function—it’s	the
placeholder.	An	argument	is	the	actual	value	that	you	pass	into	the	function.

The	combination	of	name,	parameters	and	return	type	is	called	the	function
signature.

Here’s	a	simple	function	called	multiplyByTwo():

//	Functions/MultiplyByTwo.kt

fun	multiplyByTwo(x:	Int):	Int	{		//	[1]

		println("Inside	multiplyByTwo")	//	[2]

		return	x	*	2

}

fun	main()	{

		val	r	=	multiplyByTwo(5)								//	[3]

		println(r)



}

/*	Output:

Inside	multiplyByTwo

10

*/

[1]	Notice	the	fun	keyword,	the	function	name,	and	the	parameter	list
consisting	of	a	single	parameter.	This	function	takes	an	Int	parameter	and
returns	an	Int.
[2]	These	two	lines	are	the	body	of	the	function.	The	final	line	returns	the
value	of	its	calculation	x	*	2	as	the	result	of	the	function.
[3]	This	line	calls	the	function	with	an	appropriate	argument,	and	captures
the	result	into	val	r.	A	function	call	mimics	the	form	of	its	declaration:	the
function	name,	followed	by	arguments	inside	parentheses.

The	function	code	is	executed	by	calling	the	function,	using	the	function	name
multiplyByTwo()	as	an	abbreviation	for	that	code.	This	is	why	functions	are	the
most	basic	form	of	simplification	and	code	reuse	in	programming.	You	can	also
think	of	a	function	as	an	expression	with	substitutable	values	(the	parameters).

println()	is	also	a	function	call—it	just	happens	to	be	provided	by	Kotlin.	We
refer	to	functions	defined	by	Kotlin	as	library	functions.

If	the	function	doesn’t	provide	a	meaningful	result,	its	return	type	is	Unit.	You
can	specify	Unit	explicitly	if	you	want,	but	Kotlin	lets	you	omit	it:

//	Functions/SayHello.kt

fun	sayHello()	{

		println("Hallo!")

}

fun	sayGoodbye():	Unit	{

		println("Auf	Wiedersehen!")

}

fun	main()	{

		sayHello()

		sayGoodbye()

}

/*	Output:

Hallo!

Auf	Wiedersehen!

*/

Both	sayHello()	and	sayGoodbye()	return	Unit,	but	sayHello()	leaves	out	the
explicit	declaration.	The	main()	function	also	returns	Unit.



If	a	function	is	only	a	single	expression,	you	can	use	the	abbreviated	syntax	of	an
equals	sign	followed	by	the	expression:

fun	functionName(arg1:	Type1,	arg2:	Type2,	...):	ReturnType	=	expression

A	function	body	surrounded	by	curly	braces	is	called	a	block	body.	A	function
body	using	the	equals	syntax	is	called	an	expression	body.

Here,	multiplyByThree()	uses	an	expression	body:

//	Functions/MultiplyByThree.kt

fun	multiplyByThree(x:	Int):	Int	=	x	*	3

fun	main()	{

		println(multiplyByThree(5))

}

/*	Output:

15

*/

This	is	a	short	version	of	saying	return	x	*	3	inside	a	block	body.

Kotlin	infers	the	return	type	of	a	function	that	has	an	expression	body:

//	Functions/MultiplyByFour.kt

fun	multiplyByFour(x:	Int)	=	x	*	4

fun	main()	{

		val	result:	Int	=	multiplyByFour(5)

		println(result)

}

/*	Output:

20

*/

Kotlin	infers	that	multiplyByFour()	returns	an	Int.

Kotlin	can	only	infer	return	types	for	expression	bodies.	If	a	function	has	a	block
body	and	you	omit	its	type,	that	function	returns	Unit.

-

When	writing	functions,	choose	descriptive	names.	This	makes	the	code	easier
to	read,	and	can	often	reduce	the	need	for	code	comments.	We	can’t	always	be	as
descriptive	as	we	would	prefer	with	the	function	names	in	this	book	because
we’re	constrained	by	line	widths.



Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



if	Expressions

An	if	expression	makes	a	choice.

The	if	keyword	tests	an	expression	to	see	whether	it’s	true	or	false	and
performs	an	action	based	on	the	result.	A	true-or-false	expression	is	called	a
Boolean,	after	the	mathematician	George	Boole	who	invented	the	logic	behind
these	expressions.	Here’s	an	example	using	the	>	(greater	than)	and	<	(less	than)
symbols:

//	IfExpressions/If1.kt

fun	main()	{

		if	(1	>	0)

				println("It's	true!")

		if	(10	<	11)	{

				println("10	<	11")

				println("ten	is	less	than	eleven")

		}

}

/*	Output:

It's	true!

10	<	11

ten	is	less	than	eleven

*/

The	expression	inside	the	parentheses	after	the	if	must	evaluate	to	true	or
false.	If	true,	the	following	expression	is	executed.	To	execute	multiple	lines,
place	them	within	curly	braces.

We	can	create	a	Boolean	expression	in	one	place,	and	use	it	in	another:

//	IfExpressions/If2.kt

fun	main()	{

		val	x:	Boolean	=	1	>=	1

		if	(x)

				println("It's	true!")

}

/*	Output:

It's	true!

*/

Because	x	is	Boolean,	the	if	can	test	it	directly	by	saying	if(x).



The	Boolean	>=	operator	returns	true	if	the	expression	on	the	left	side	of	the
operator	is	greater	than	or	equal	to	that	on	the	right.	Likewise,	<=	returns	true	if
the	expression	on	the	left	side	is	less	than	or	equal	to	that	on	the	right.

The	else	keyword	allows	you	to	handle	both	true	and	false	paths:

//	IfExpressions/If3.kt

fun	main()	{

		val	n:	Int	=	-11

		if	(n	>	0)

				println("It's	positive")

		else

				println("It's	negative	or	zero")

}

/*	Output:

It's	negative	or	zero

*/

The	else	keyword	is	only	used	in	conjunction	with	if.	You	are	not	limited	to	a
single	check—you	can	test	multiple	combinations	by	combining	else	and	if:

//	IfExpressions/If4.kt

fun	main()	{

		val	n:	Int	=	-11

		if	(n	>	0)

				println("It's	positive")

		else	if	(n	==	0)

				println("It's	zero")

		else

				println("It's	negative")

}

/*	Output:

It's	negative

*/

Here	we	use	==	to	check	two	numbers	for	equality.	!=	tests	for	inequality.

The	typical	pattern	is	to	start	with	if,	followed	by	as	many	else	if	clauses	as
you	need,	ending	with	a	final	else	for	anything	that	doesn’t	match	all	the
previous	tests.	When	an	if	expression	reaches	a	certain	size	and	complexity
you’ll	probably	use	a	when	expression	instead.	when	is	described	later	in	the
book,	in	when	Expressions.

The	“not”	operator	!	tests	for	the	opposite	of	a	Boolean	expression:

//	IfExpressions/If5.kt

fun	main()	{

		val	y:	Boolean	=	false

		if	(!y)



				println("!y	is	true")

}

/*	Output:

!y	is	true

*/

To	verbalize	if(!y),	say	“if	not	y.”

The	entire	if	is	an	expression,	so	it	can	produce	a	result:

//	IfExpressions/If6.kt

fun	main()	{

		val	num	=	10

		val	result	=	if	(num	>	100)	4	else	42

		println(result)

}

/*	Output:

42

*/

Here,	we	store	the	value	produced	by	the	entire	if	expression	in	an	intermediate
identifier	called	result.	If	the	condition	is	satisfied,	the	first	branch	produces
result.	If	not,	the	else	value	becomes	result.

Let’s	practice	creating	functions.	Here’s	one	that	takes	a	Boolean	parameter:

//	IfExpressions/TrueOrFalse.kt

fun	trueOrFalse(exp:	Boolean):	String	{

		if	(exp)

				return	"It's	true!"										//	[1]

		return	"It's	false"												//	[2]

}

fun	main()	{

		val	b	=	1

		println(trueOrFalse(b	<	3))

		println(trueOrFalse(b	>=	3))

}

/*	Output:

It's	true!

It's	false

*/

The	Boolean	parameter	exp	is	passed	to	the	function	trueOrFalse().	If	the
argument	is	passed	as	an	expression,	such	as	b	<	3,	that	expression	is	first
evaluated	and	the	result	is	passed	to	the	function.	trueOrFalse()	tests	exp	and	if
the	result	is	true,	line	[1]	is	executed,	otherwise	line	[2]	is	executed.

[1]	return	says,	“Leave	the	function	and	produce	this	value	as	the
function’s	result.”	Notice	that	return	can	appear	anywhere	in	a	function



and	does	not	have	to	be	at	the	end.

Rather	than	using	return	as	in	the	previous	example,	you	can	use	the	else
keyword	to	produce	the	result	as	an	expression:

//	IfExpressions/OneOrTheOther.kt

fun	oneOrTheOther(exp:	Boolean):	String	=

		if	(exp)

				"True!"	//	No	'return'	necessary

		else

				"False"

fun	main()	{

		val	x	=	1

		println(oneOrTheOther(x	==	1))

		println(oneOrTheOther(x	==	2))

}

/*	Output:

True!

False

*/

Instead	of	two	expressions	in	trueOrFalse(),	oneOrTheOther()	is	a	single
expression.	The	result	of	that	expression	is	the	result	of	the	function,	so	the	if
expression	becomes	the	function	body.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



String	Templates

A	String	template	is	a	programmatic	way	to	generate	a	String.

If	you	put	a	$	before	an	identifier	name,	the	String	template	will	insert	that
identifier’s	contents	into	the	String:

//	StringTemplates/StringTemplates.kt

fun	main()	{

		val	answer	=	42

		println("Found	$answer!")					//	[1]

		println("printing	a	$1")						//	[2]

}

/*	Output:

Found	42!

printing	a	$1

*/

[1]	$answer	substitutes	the	value	of	answer.
[2]	If	what	follows	the	$	isn’t	recognizable	as	a	program	identifier,	nothing
special	happens.

You	can	also	insert	values	into	a	String	using	concatenation	(+):

//	StringTemplates/StringConcatenation.kt

fun	main()	{

		val	s	=	"hi\n"	//	\n	is	a	newline	character

		val	n	=	11

		val	d	=	3.14

		println("first:	"	+	s	+	"second:	"	+

				n	+	",	third:	"	+	d)

}

/*	Output:

first:	hi

second:	11,	third:	3.14

*/

Placing	an	expression	inside	${}	evaluates	it.	The	return	value	is	converted	to	a
String	and	inserted	into	the	resulting	String:

//	StringTemplates/ExpressionInTemplate.kt

fun	main()	{

		val	condition	=	true

		println(



				"${if	(condition)	'a'	else	'b'}")		//	[1]

		val	x	=	11

		println("$x	+	4	=	${x	+	4}")

}

/*	Output:

a

11	+	4	=	15

*/

[1]	if(condition)	'a'	else	'b'	is	evaluated	and	the	result	is	substituted
for	the	entire	${}	expression.

When	a	String	must	include	a	special	character,	such	as	a	quote,	you	can	either
escape	that	character	with	a	\	(backslash),	or	use	a	String	literal	in	triple	quotes:

//	StringTemplates/TripleQuotes.kt

fun	main()	{

		val	s	=	"value"

		println("s	=	\"$s\".")

		println("""s	=	"$s".""")

}

/*	Output:

s	=	"value".

s	=	"value".

*/

With	triple	quotes,	you	insert	a	value	of	an	expression	the	same	way	you	do	it	for
a	single-quoted	String.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Number	Types

Different	types	of	numbers	are	stored	in	different	ways.

If	you	create	an	identifier	and	assign	an	integer	value	to	it,	Kotlin	infers	the	Int
type:

//	NumberTypes/InferInt.kt

fun	main()	{

		val	million	=	1_000_000		//	Infers	Int

		println(million)

}

/*	Output:

1000000

*/

For	readability,	Kotlin	allows	underscores	within	numerical	values.

The	basic	mathematical	operators	for	numbers	are	the	ones	available	in	most
programming	languages:	addition	(+),	subtraction	(-),	division	(/),	multiplication
(*)	and	modulus	(%),	which	produces	the	remainder	from	integer	division:

//	NumberTypes/Modulus.kt

fun	main()	{

		val	numerator:	Int	=	19

		val	denominator:	Int	=	10

		println(numerator	%	denominator)

}

/*	Output:

9

*/

Integer	division	truncates	its	result:

//	NumberTypes/IntDivisionTruncates.kt

fun	main()	{

		val	numerator:	Int	=	19

		val	denominator:	Int	=	10

		println(numerator	/	denominator)

}

/*	Output:

1

*/



If	the	operation	had	rounded	the	result,	the	output	would	be	2.

The	order	of	operations	follows	basic	arithmetic:

//	NumberTypes/OpOrder.kt

fun	main()	{

		println(45	+	5	*	6)

}

/*	Output:

75

*/

The	multiplication	operation	5	*	6	is	performed	first,	followed	by	the	addition
45	+	30.

If	you	want	45	+	5	to	happen	first,	use	parentheses:

//	NumberTypes/OpOrderParens.kt

fun	main()	{

		println((45	+	5)	*	6)

}

/*	Output:

300

*/

Now	let’s	calculate	body	mass	index	(BMI),	which	is	weight	in	kilograms
divided	by	the	square	of	the	height	in	meters.	If	you	have	a	BMI	of	less	than
18.5,	you	are	underweight.	Between	18.5	and	24.9	is	normal	weight.	BMI	of	25
and	higher	is	overweight.	This	example	also	shows	the	preferred	formatting	style
when	you	can’t	fit	the	function’s	parameters	on	a	single	line:

//	NumberTypes/BMIMetric.kt

fun	bmiMetric(

		weight:	Double,

		height:	Double

):	String	{

		val	bmi	=	weight	/	(height	*	height)		//	[1]

		return	if	(bmi	<	18.5)	"Underweight"

				else	if	(bmi	<	25)	"Normal	weight"

				else	"Overweight"

}

fun	main()	{

		val	weight	=	72.57	//	160	lbs

		val	height	=	1.727	//	68	inches

		val	status	=	bmiMetric(weight,	height)

		println(status)

}

/*	Output:

Normal	weight

*/



[1]	If	you	remove	the	parentheses,	you	divide	weight	by	height	then
multiply	that	result	by	height.	That’s	a	much	larger	number,	and	the	wrong
answer.

bmiMetric()	uses	Doubles	for	the	weight	and	height.	A	Double	holds	very	large
and	very	small	floating-point	numbers.

Here’s	a	version	using	English	units,	represented	by	Int	parameters:

//	NumberTypes/BMIEnglish.kt

fun	bmiEnglish(

		weight:	Int,

		height:	Int

):	String	{

		val	bmi	=

				weight	/	(height	*	height)	*	703.07	//	[1]

		return	if	(bmi	<	18.5)	"Underweight"

				else	if	(bmi	<	25)	"Normal	weight"

				else	"Overweight"

}

fun	main()	{

		val	weight	=	160

		val	height	=	68

		val	status	=	bmiEnglish(weight,	height)

		println(status)

}

/*	Output:

Underweight

*/

Why	does	the	result	differ	from	bmiMetric(),	which	uses	Doubles?	When	you
divide	an	integer	by	another	integer,	Kotlin	produces	an	integer	result.	The
standard	way	to	deal	with	the	remainder	during	integer	division	is	truncation,
meaning	“chop	it	off	and	throw	it	away”	(there’s	no	rounding).	So	if	you	divide	5
by	2	you	get	2,	and	7/10	is	zero.	When	Kotlin	calculates	bmi	in	expression	[1],	it
divides	160	by	68	*	68	and	gets	zero.	It	then	multiplies	zero	by	703.07	to	get
zero.

To	avoid	this	problem,	move	703.07	to	the	front	of	the	calculation.	The
calculations	are	then	forced	to	be	Double:

val	bmi	=	703.07	*	weight	/	(height	*	height)

The	Double	parameters	in	bmiMetric()	prevent	this	problem.	Convert
computations	to	the	desired	type	as	early	as	possible	to	preserve	accuracy.



All	programming	languages	have	limits	to	what	they	can	store	within	an	integer.
Kotlin’s	Int	type	can	take	values	between	-231	and	+231-1,	a	constraint	of	the
Int	32-bit	representation.	If	you	sum	or	multiply	two	Ints	that	are	big	enough,
you’ll	overflow	the	result:

//	NumberTypes/IntegerOverflow.kt

fun	main()	{

		val	i:	Int	=	Int.MAX_VALUE

		println(i	+	i)

}

/*	Output:

-2

*/

Int.MAX_VALUE	is	a	predefined	value	which	is	the	largest	number	an	Int	can
hold.

The	overflow	produces	a	result	that	is	clearly	incorrect,	as	it	is	both	negative	and
much	smaller	than	we	expect.	Kotlin	issues	a	warning	whenever	it	detects	a
potential	overflow.

Preventing	overflow	is	your	responsibility	as	a	developer.	Kotlin	can’t	always
detect	overflow	during	compilation,	and	it	doesn’t	prevent	overflow	because	that
would	produce	an	unacceptable	performance	impact.

If	your	program	contains	large	numbers,	you	can	use	Longs,	which	accommodate
values	from	-263	to	+263-1.	To	define	a	val	of	type	Long,	you	can	specify	the
type	explicitly	or	put	L	at	the	end	of	a	numeric	literal,	which	tells	Kotlin	to	treat
that	value	as	a	Long:

//	NumberTypes/LongConstants.kt

fun	main()	{

		val	i	=	0										//	Infers	Int

		val	l1	=	0L								//	L	creates	Long

		val	l2:	Long	=	0			//	Explicit	type

		println("$l1	$l2")

}

/*	Output:

0	0

*/

By	changing	to	Longs	we	prevent	the	overflow	in	IntegerOverflow.kt:

//	NumberTypes/UsingLongs.kt

fun	main()	{

		val	i	=	Int.MAX_VALUE



		println(0L	+	i	+	i)														//	[1]

		println(1_000_000	*	1_000_000L)		//	[2]

}

/*	Output:

4294967294

1000000000000

*/

Using	a	numeric	literal	in	both	[1]	and	[2]	forces	Long	calculations,	and	also
produces	a	result	of	type	Long.	The	location	where	the	L	appears	is	unimportant.
If	one	of	the	values	is	Long,	the	resulting	expression	is	Long.

Although	they	can	hold	much	larger	values	than	Ints,	Longs	still	have	size
limitations:

//	NumberTypes/BiggestLong.kt

fun	main()	{

		println(Long.MAX_VALUE)

}

/*	Output:

9223372036854775807

*/

Long.MAX_VALUE	is	the	largest	value	a	Long	can	hold.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Booleans

if	Expressions	demonstrated	the	“not”	operator	!,	which	negates	a	Boolean
value.	This	atom	introduces	more	Boolean	Algebra.

We	start	with	the	operators	“and”	and	“or”:

&&	(and):	Produces	true	only	if	the	Boolean	expression	on	the	left	of	the
operator	and	the	one	on	the	right	are	both	true.
||	(or):	Produces	true	if	either	the	expression	on	the	left	or	right	of	the
operator	is	true,	or	if	both	are	true.

In	this	example,	we	determine	whether	a	business	is	open	or	closed,	based	on	the
hour:

//	Booleans/Open1.kt

fun	isOpen1(hour:	Int)	{

		val	open	=	9

		val	closed	=	20

		println("Operating	hours:	$open	-	$closed")

		val	status	=

				if	(hour	>=	open	&&	hour	<=	closed)	//	[1]

						true

				else

						false

		println("Open:	$status")

}

fun	main()	=	isOpen1(6)

/*	Output:

Operating	hours:	9	-	20

Open:	false

*/

main()	is	a	single	function	call,	so	we	can	use	an	expression	body	as	described
in	Functions.

The	if	expression	in	[1]	Checks	whether	hour	is	between	the	opening	time	and
closing	time,	so	we	combine	the	expressions	with	the	Boolean	&&	(and).

The	if	expression	can	be	simplified.	The	result	of	the	expression	if(cond)
true	else	false	is	just	cond:



//	Booleans/Open2.kt

fun	isOpen2(hour:	Int)	{

		val	open	=	9

		val	closed	=	20

		println("Operating	hours:	$open	-	$closed")

		val	status	=	hour	>=	open	&&	hour	<=	closed

		println("Open:	$status")

}

fun	main()	=	isOpen2(6)

/*	Output:

Operating	hours:	9	-	20

Open:	false

*/

Let’s	reverse	the	logic	and	check	whether	the	business	is	currently	closed.	The
“or”	operator	||	produces	true	if	at	least	one	of	the	conditions	is	satisfied:

//	Booleans/Closed.kt

fun	isClosed(hour:	Int)	{

		val	open	=	9

		val	closed	=	20

		println("Operating	hours:	$open	-	$closed")

		val	status	=	hour	<	open	||	hour	>	closed

		println("Closed:	$status")

}

fun	main()	=	isClosed(6)

/*	Output:

Operating	hours:	9	-	20

Closed:	true

*/

Boolean	operators	enable	complicated	logic	in	compact	expressions.	However,
things	can	easily	become	confusing.	Strive	for	readability	and	specify	your
intentions	explicitly.

Here’s	an	example	of	a	complicated	Boolean	expression	where	different
evaluation	order	produces	different	results:

//	Booleans/EvaluationOrder.kt

fun	main()	{

		val	sunny	=	true

		val	hoursSleep	=	6

		val	exercise	=	false

		val	temp	=	55

		//	[1]:

		val	happy1	=	sunny	&&	temp	>	50	||

				exercise	&&	hoursSleep	>	7

		println(happy1)

		//	[2]:

		val	sameHappy1	=	(sunny	&&	temp	>	50)	||



				(exercise	&&	hoursSleep	>	7)

		println(sameHappy1)

		//	[3]:

		val	notSame	=

				(sunny	&&	temp	>	50	||	exercise)	&&

						hoursSleep	>	7

		println(notSame)

}

/*	Output:

true

true

false

*/

The	Boolean	expressions	are	sunny,	temp	>	50,	exercise,	and	hoursSleep	>
7.	We	read	happy1	as	“It’s	sunny	and	the	temperature	is	greater	than	50	or	I’ve
exercised	and	had	more	than	7	hours	of	sleep.”	But	does	&&	have	precedence
over	||,	or	the	opposite?

The	expression	in	[1]	uses	Kotlin’s	default	evaluation	order.	This	produces	the
same	result	as	the	expression	in	[2]	because,	without	parentheses,	the	“ands”	are
evaluated	first,	then	the	“or”.	The	expression	in	[3]	uses	parentheses	to	produce	a
different	result.	In	[3],	we’re	only	happy	if	we	get	at	least	7	hours	of	sleep.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Repetition	with	while

Computers	are	ideal	for	repetitive	tasks.

The	most	basic	form	of	repetition	uses	the	while	keyword.	This	repeats	a	block
as	long	as	the	controlling	Boolean	expression	is	true:

while	(Boolean-expression)	{

		//	Code	to	be	repeated

}

The	Boolean	expression	is	evaluated	once	at	the	beginning	of	the	loop	and	again
before	each	further	iteration	through	the	block.

//	RepetitionWithWhile/WhileLoop.kt

fun	condition(i:	Int)	=	i	<	100		//	[1]

fun	main()	{

		var	i	=	0

		while	(condition(i))	{									//	[2]

				print(".")

				i	+=	10																						//	[3]

		}

}

/*	Output:

..........

*/

[1]	The	comparison	operator	<	produces	a	Boolean	result,	so	Kotlin	infers
Boolean	as	the	result	type	for	condition().
[2]	The	conditional	expression	for	the	while	says:	“repeat	the	statements	in
the	body	as	long	as	condition()	returns	true.”
[3]	The	+=	operator	adds	10	to	i	and	assigns	the	result	to	i	in	a	single
operation	(i	must	be	a	var	for	this	to	work).	This	is	equivalent	to:

i	=	i	+	10

There’s	a	second	way	to	use	while,	in	conjunction	with	the	do	keyword:

do	{

		//	Code	to	be	repeated

}	while	(Boolean-expression)



Rewriting	WhileLoop.kt	to	use	a	do-while	produces:

//	RepetitionWithWhile/DoWhileLoop.kt

fun	main()	{

		var	i	=	0

		do	{

				print(".")

				i	+=	10

		}	while	(condition(i))

}

/*	Output:

..........

*/

The	sole	difference	between	while	and	do-while	is	that	the	body	of	the	do-
while	always	executes	at	least	once,	even	if	the	Boolean	expression	initially
produces	false.	In	a	while,	if	the	conditional	is	false	the	first	time,	then	the
body	never	executes.	In	practice,	do-while	is	less	common	than	while.

The	short	versions	of	assignment	operators	are	available	for	all	the	arithmetic
operations:	+=,	-=,	*=,	/=,	and	%=.	This	uses	-=	and	%=:

//	RepetitionWithWhile/AssignmentOperators.kt

fun	main()	{

		var	n	=	10

		val	d	=	3

		print(n)

		while	(n	>	d)	{

				n	-=	d

				print("	-	$d")

		}

		println("	=	$n")

		var	m	=	10

		print(m)

		m	%=	d

		println("	%	$d	=	$m")

}

/*	Output:

10	-	3	-	3	-	3	=	1

10	%	3	=	1

*/

To	calculate	the	remainder	of	the	integer	division	of	two	natural	numbers,	we
start	with	a	while	loop,	then	use	the	remainder	operator.

Adding	1	and	subtracting	1	from	a	number	are	so	common	that	they	have	their
own	increment	and	decrement	operators:	++	and	--.	You	can	replace	i	+=	1	with
i++:



//	RepetitionWithWhile/IncrementOperator.kt

fun	main()	{

		var	i	=	0

		while	(i	<	4)	{

				print(".")

				i++

		}

}

/*	Output:

....

*/

In	practice,	while	loops	are	not	used	for	iterating	over	a	range	of	numbers.	The
for	loop	is	used	instead.	This	is	covered	in	the	next	atom.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Looping	&	Ranges

The	for	keyword	executes	a	block	of	code	for	each	value	in	a	sequence.

The	set	of	values	can	be	a	range	of	integers,	a	String,	or,	as	you’ll	see	later	in
the	book,	a	collection	of	items.	The	in	keyword	indicates	that	you	are	stepping
through	values:

for	(v	in	values)	{

		//	Do	something	with	v

}

Each	time	through	the	loop,	v	is	given	the	next	element	in	values.

Here’s	a	for	loop	repeating	an	action	a	fixed	number	of	times:

//	LoopingAndRanges/RepeatThreeTimes.kt

fun	main()	{

		for	(i	in	1..3)	{

				println("Hey	$i!")

		}

}

/*	Output:

Hey	1!

Hey	2!

Hey	3!

*/

The	output	shows	the	index	i	receiving	each	value	in	the	range	from	1	to	3.

A	range	is	an	interval	of	values	defined	by	a	pair	of	endpoints.	There	are	two
basic	ways	to	define	ranges:

//	LoopingAndRanges/DefiningRanges.kt

fun	main()	{

		val	range1	=	1..10									//	[1]

		val	range2	=	0	until	10				//	[2]

		println(range1)

		println(range2)

}

/*	Output:

1..10

0..9

*/



[1]	Using	..	syntax	includes	both	bounds	in	the	resulting	range.
[2]	until	excludes	the	end.	The	output	shows	that	10	is	not	part	of	the
range.

Displaying	a	range	produces	a	readable	format.

This	sums	the	numbers	from	10	to	100:

//	LoopingAndRanges/SumUsingRange.kt

fun	main()	{

		var	sum	=	0

		for	(n	in	10..100)	{

				sum	+=	n

		}

		println("sum	=	$sum")

}

/*	Output:

sum	=	5005

*/

You	can	iterate	over	a	range	in	reverse	order.	You	can	also	use	a	step	value	to
change	the	interval	from	the	default	of	1:

//	LoopingAndRanges/ForWithRanges.kt

fun	showRange(r:	IntProgression)	{

		for	(i	in	r)	{

				print("$i	")

		}

		print("				//	$r")

		println()

}

fun	main()	{

		showRange(1..5)

		showRange(0	until	5)

		showRange(5	downTo	1)										//	[1]

		showRange(0..9	step	2)									//	[2]

		showRange(0	until	10	step	3)			//	[3]

		showRange(9	downTo	2	step	3)

}

/*	Output:

1	2	3	4	5					//	1..5

0	1	2	3	4					//	0..4

5	4	3	2	1					//	5	downTo	1	step	1

0	2	4	6	8					//	0..8	step	2

0	3	6	9					//	0..9	step	3

9	6	3					//	9	downTo	3	step	3

*/

[1]	downTo	produces	a	decreasing	range.
[2]	step	changes	the	interval.	Here,	the	range	steps	by	a	value	of	two
instead	of	one.



[3]	until	can	also	be	used	with	step.	Notice	how	this	affects	the	output.

In	each	case	the	sequence	of	numbers	form	an	arithmetic	progression.
showRange()	accepts	an	IntProgression	parameter,	which	is	a	built-in	type	that
includes	Int	ranges.	Notice	that	the	String	representation	of	each
IntProgression	as	it	appears	in	output	comment	for	each	line	is	often	different
from	the	range	passed	into	showRange()—the	IntProgression	is	translating	the
input	into	an	equivalent	common	form.

You	can	also	produce	a	range	of	characters.	This	for	iterates	from	a	to	z:

//	LoopingAndRanges/ForWithCharRange.kt

fun	main()	{

		for	(c	in	'a'..'z')	{

				print(c)

		}

}

/*	Output:

abcdefghijklmnopqrstuvwxyz

*/

You	can	iterate	over	a	range	of	elements	that	are	whole	quantities,	like	integers
and	characters,	but	not	floating-point	values.

Square	brackets	access	characters	by	index.	Because	we	start	counting	characters
in	a	String	at	zero,	s[0]	selects	the	first	character	of	the	String	s.	Selecting
s.lastIndex	produces	the	final	index	number:

//	LoopingAndRanges/IndexIntoString.kt

fun	main()	{

		val	s	=	"abc"

		for	(i	in	0..s.lastIndex)	{

				print(s[i]	+	1)

		}

}

/*	Output:

bcd

*/

Sometimes	people	describe	s[0]	as	“the	zeroth	character.”

Characters	are	stored	as	numbers	corresponding	to	their	ASCII	codes,	so	adding
an	integer	to	a	character	produces	a	new	character	corresponding	to	the	new
code	value:

//	LoopingAndRanges/AddingIntToChar.kt

https://en.wikipedia.org/wiki/ASCII


fun	main()	{

		val	ch:	Char	=	'a'

		println(ch	+	25)

		println(ch	<	'z')

}

/*	Output:

z

true

*/

The	second	println()	shows	that	you	can	compare	character	codes.

A	for	loop	can	iterate	over	Strings	directly:

//	LoopingAndRanges/IterateOverString.kt

fun	main()	{

		for	(ch	in	"Jnskhm	")	{

				print(ch	+	1)

		}

}

/*	Output:

Kotlin!

*/

ch	receives	each	character	in	turn.

In	the	following	example,	the	function	hasChar()	iterates	over	the	String	s	and
tests	whether	it	contains	a	given	character	ch.	The	return	in	the	middle	of	the
function	stops	the	function	when	the	answer	is	found:

//	LoopingAndRanges/HasChar.kt

fun	hasChar(s:	String,	ch:	Char):	Boolean	{

		for	(c	in	s)	{

				if	(c	==	ch)	return	true

		}

		return	false

}

fun	main()	{

		println(hasChar("kotlin",	't'))

		println(hasChar("kotlin",	'a'))

}

/*	Output:

true

false

*/

The	next	atom	shows	that	hasChar()	is	unnecessary—you	can	use	built-in
syntax	instead.



If	you	simply	want	to	repeat	an	action	a	fixed	number	of	times,	you	may	use
repeat()	instead	of	a	for	loop:

//	LoopingAndRanges/RepeatHi.kt

fun	main()	{

		repeat(2)	{

				println("hi!")

		}

}

/*	Output:

hi!

hi!

*/

repeat()	is	a	standard	library	function,	not	a	keyword.	You’ll	see	how	it	was
created	much	later	in	the	book.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



The	in	Keyword

The	in	keyword	tests	whether	a	value	is	within	a	range.

//	InKeyword/MembershipInRange.kt

fun	main()	{

		val	percent	=	35

		println(percent	in	1..100)

}

/*	Output:

true

*/

In	Booleans,	you	learned	to	check	bounds	explicitly:

//	InKeyword/MembershipUsingBounds.kt

fun	main()	{

		val	percent	=	35

		println(0	<=	percent	&&	percent	<=	100)

}

/*	Output:

true

*/

0	<=	x	&&	x	<=	100	is	logically	equivalent	to	x	in	0..100.	IntelliJ	IDEA
suggests	automatically	replacing	the	first	form	with	the	second,	which	is	easier
to	read	and	understand.

The	in	keyword	is	used	for	both	iteration	and	membership.	An	in	inside	the
control	expression	of	a	for	loop	means	iteration,	otherwise	in	checks
membership:

//	InKeyword/IterationVsMembership.kt

fun	main()	{

		val	values	=	1..3

		for	(v	in	values)	{

				println("iteration	$v")

		}

		val	v	=	2

		if	(v	in	values)

				println("$v	is	a	member	of	$values")

}

/*	Output:

iteration	1

iteration	2



iteration	3

2	is	a	member	of	1..3

*/

The	in	keyword	is	not	limited	to	ranges.	You	can	also	check	whether	a	character
is	a	part	of	a	String.	The	following	example	uses	in	instead	of	hasChar()	from
the	previous	atom:

//	InKeyword/InString.kt

fun	main()	{

		println('t'	in	"kotlin")

		println('a'	in	"kotlin")

}

/*	Output:

true

false

*/

Later	in	the	book	you’ll	see	that	in	works	with	other	types,	as	well.

Here,	in	tests	whether	a	character	belongs	to	a	range	of	characters:

//	InKeyword/CharRange.kt

fun	isDigit(ch:	Char)	=	ch	in	'0'..'9'

fun	notDigit(ch:	Char)	=

		ch	!in	'0'..'9'															//	[1]

fun	main()	{

		println(isDigit('a'))

		println(isDigit('5'))

		println(notDigit('z'))

}

/*	Output:

false

true

true

*/

[1]	!in	checks	that	a	value	doesn’t	belong	to	a	range.

You	can	create	a	Double	range,	but	you	can	only	use	it	to	check	for	membership:

//	InKeyword/FloatingPointRange.kt

fun	inFloatRange(n:	Double)	{

		val	r	=	1.0..10.0

		println("$n	in	$r?	${n	in	r}")

}

fun	main()	{

		inFloatRange(0.999999)

		inFloatRange(5.0)



		inFloatRange(10.0)

		inFloatRange(10.0000001)

}

/*	Output:

0.999999	in	1.0..10.0?	false

5.0	in	1.0..10.0?	true

10.0	in	1.0..10.0?	true

10.0000001	in	1.0..10.0?	false

*/

Floating-point	ranges	can	only	be	created	using	..	because	until	would	mean
excluding	a	floating-point	number	as	an	endpoint,	which	doesn’t	make	sense.

You	can	check	whether	a	String	is	a	member	of	a	range	of	Strings:

//	InKeyword/StringRange.kt

fun	main()	{

		println("ab"	in	"aa".."az")

		println("ba"	in	"aa".."az")

}

/*	Output:

true

false

*/

Here	Kotlin	uses	alphabetic	comparison.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Expressions	&	Statements

Statements	and	expressions	are	the	smallest	useful	fragments	of	code	in
most	programming	languages.

There’s	a	basic	difference:	a	statement	has	an	effect,	but	produces	no	result.	An
expression	always	produces	a	result.

Because	it	doesn’t	produce	a	result,	a	statement	must	change	the	state	of	its
surroundings	to	be	useful.	Another	way	to	say	this	is	“a	statement	is	called	for	its
side	effects”	(that	is,	what	it	does	other	than	producing	a	result).	As	a	memory
aid:

A	statement	changes	state.

One	definition	of	“express”	is	“to	force	or	squeeze	out,”	as	in	“to	express	the
juice	from	an	orange.”	So

An	expression	expresses.

That	is,	it	produces	a	result.

The	for	loop	is	a	statement	in	Kotlin.	You	cannot	assign	it	because	there’s	no
result:

//	ExpressionsStatements/ForIsAStatement.kt

fun	main()	{

		//	Can't	do	this:

		//	val	f	=	for(i	in	1..10)	{}

		//	Compiler	error	message:

		//	for	is	not	an	expression,	and

		//	only	expressions	are	allowed	here

}

A	for	loop	is	used	for	its	side	effects.



An	expression	produces	a	value,	which	can	be	assigned	or	used	as	part	of
another	expression,	whereas	a	statement	is	always	a	top-level	element.

Every	function	call	is	an	expression.	Even	if	the	function	returns	Unit	and	is
called	only	for	its	side	effects,	the	result	can	still	be	assigned:

//	ExpressionsStatements/UnitReturnType.kt

fun	unitFun()	=	Unit

fun	main()	{

		println(unitFun())

		val	u1:	Unit	=	println(42)

		println(u1)

		val	u2	=	println(0)	//	Type	inference

		println(u2)

}

/*	Output:

kotlin.Unit

42

kotlin.Unit

0

kotlin.Unit

*/

The	Unit	type	contains	a	single	value	called	Unit,	which	you	can	return	directly,
as	seen	in	unitFun().	Calling	println()	also	returns	Unit.	The	val	u1	captures
the	return	value	of	println()	and	is	explicitly	declared	as	Unit	while	u2	uses
type	inference.

if	creates	an	expression,	so	you	can	assign	its	result:

//	ExpressionsStatements/AssigningAnIf.kt

fun	main()	{

		val	result1	=	if	(11	>	42)	9	else	5

		val	result2	=	if	(1	<	2)	{

				val	a	=	11

				a	+	42

		}	else	42

		val	result3	=

				if	('x'	<	'y')

						println("x	<	y")

				else

						println("x	>	y")

		println(result1)

		println(result2)

		println(result3)

}

/*	Output:

x	<	y

5

53



kotlin.Unit

*/

The	first	output	line	is	x	<	y,	even	though	result3	isn’t	displayed	until	the	end
of	main().	This	happens	because	evaluating	result3	calls	println(),	and	the
evaluation	occurs	when	result3	is	defined.

Notice	that	a	is	defined	inside	the	block	of	code	for	result2.	The	result	of	the
last	expression	becomes	the	result	of	the	if	expression;	here,	it’s	the	sum	of	11
and	42.	But	what	about	a?	Once	you	leave	the	code	block	(move	outside	the
curly	braces),	you	can’t	access	a.	It	is	temporary	and	is	discarded	once	you	exit
the	scope	of	that	block.

The	increment	operator	i++	is	also	an	expression,	even	if	it	looks	like	a
statement.	Kotlin	follows	the	approach	used	by	C-like	languages	and	provides
two	versions	of	increment	and	decrement	operators	with	slightly	different
semantics.	The	prefix	operator	appears	before	the	operand,	as	in	++i,	and	returns
the	value	after	the	increment	happens.	You	can	read	it	as	“first	do	the	increment,
then	return	the	resulting	value.”	The	postfix	operator	is	placed	after	the	operand,
as	in	i++,	and	returns	the	value	of	i	before	the	increment	occurs.	You	can	read	it
as	“first	produce	the	result,	then	do	the	increment.”

//	ExpressionsStatements/PostfixVsPrefix.kt

fun	main()	{

		var	i	=	10

		println(i++)

		println(i)

		var	j	=	20

		println(++j)

		println(j)

}

/*	Output:

10

11

21

21

*/

The	decrement	operator	also	has	two	versions:	--i	and	i--.	Using	increment	and
decrement	operators	within	other	expressions	is	discouraged	because	it	can
produce	confusing	code:

//	ExpressionsStatements/Confusing.kt

fun	main()	{

		var	i	=	1

		println(i++	+	++i)

}



Try	to	guess	what	the	output	will	be,	then	check	it.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Summary	1

This	atom	summarizes	and	reviews	the	atoms	in	Section	I,	starting	at	Hello,
World!	and	ending	with	Expressions	&	Statements.

If	you’re	an	experienced	programmer,	this	should	be	your	first	atom.	New
programmers	should	read	this	atom	and	perform	the	exercises	as	a	review	of
Section	I.

If	anything	isn’t	clear	to	you,	study	the	associated	atom	for	that	topic	(the	sub-
headings	correspond	to	atom	titles).

Hello,	World!
Kotlin	supports	both	//	single-line	comments,	and	/*-to-*/	multiline	comments.
A	program’s	entry	point	is	the	function	main():

//	Summary1/Hello.kt

fun	main()	{

		println("Hello,	world!")

}

/*	Output:

Hello,	world!

*/

The	first	line	of	each	example	in	this	book	is	a	comment	containing	the	name	of
the	atom’s	subdirectory,	followed	by	a	/	and	the	name	of	the	file.	You	can	find
all	the	extracted	code	examples	via	AtomicKotlin.com.

println()	is	a	standard	library	function	which	takes	a	single	String	parameter
(or	a	parameter	that	can	be	converted	to	a	String).	println()	moves	the	cursor
to	a	new	line	after	displaying	its	parameter,	while	print()	leaves	the	cursor	on
the	same	line.

Kotlin	does	not	require	a	semicolon	at	the	end	of	an	expression	or	statement.
Semicolons	are	only	necessary	to	separate	multiple	expressions	or	statements	on
a	single	line.



var	&	val,	Data	Types
To	create	an	unchanging	identifier,	use	the	val	keyword	followed	by	the
identifier	name,	a	colon,	and	the	type	for	that	value.	Then	add	an	equals	sign	and
the	value	to	assign	to	that	val:

val	identifier:	Type	=	initialization

Once	a	val	is	assigned,	it	cannot	be	reassigned.

Kotlin’s	type	inference	can	usually	determine	the	type	automatically,	based	on
the	initialization	value.	This	produces	a	simpler	definition:

val	identifier	=	initialization

Both	of	the	following	are	valid:

val	daysInFebruary	=	28

val	daysInMarch:	Int	=	31

A	var	(variable)	definition	looks	the	same,	using	var	instead	of	val:

var	identifier1	=	initialization

var	identifier2:	Type	=	initialization

Unlike	a	val,	you	can	modify	a	var,	so	the	following	is	legal:

var	hoursSpent	=	20

hoursSpent	=	25

However,	the	type	can’t	be	changed,	so	you	get	an	error	if	you	say:

hoursSpent	=	30.5

Kotlin	infers	the	Int	type	when	hoursSpent	is	defined,	so	it	won’t	accept	the
change	to	a	floating-point	value.

Functions
Functions	are	named	subroutines:

fun	functionName(arg1:	Type1,	arg2:	Type2,	...):	ReturnType	{

		//	Lines	of	code	...

		return	result

}



The	fun	keyword	is	followed	by	the	function	name	and	the	parameter	list	in
parentheses.	Each	parameter	must	have	an	explicit	type	because	Kotlin	cannot
infer	parameter	types.	The	function	itself	has	a	type,	defined	in	the	same	way	as
for	a	var	or	val	(a	colon	followed	by	the	type).	A	function’s	type	is	the	type	of
the	returned	result.

The	function	signature	is	followed	by	the	function	body	contained	within	curly
braces.	The	return	statement	provides	the	function’s	return	value.

You	can	use	an	abbreviated	syntax	when	the	function	consists	of	a	single
expression:

fun	functionName(arg1:	Type1,	arg2:	Type2,	...):	ReturnType	=	result

This	form	is	called	an	expression	body.	Instead	of	an	opening	curly	brace,	use	an
equals	sign	followed	by	the	expression.	You	can	omit	the	return	type	because
Kotlin	infers	it.

Here’s	a	function	that	produces	the	cube	of	its	parameter,	and	another	that	adds
an	exclamation	point	to	a	String:

//	Summary1/BasicFunctions.kt

fun	cube(x:	Int):	Int	{

		return	x	*	x	*	x

}

fun	bang(s:	String)	=	s	+	"!"

fun	main()	{

		println(cube(3))

		println(bang("pop"))

}

/*	Output:

27

pop!

*/

cube()	has	a	block	body	with	an	explicit	return	statement.	bang()	is	an
expression	body	producing	the	function’s	return	value.	Kotlin	infers	bang()’s
return	type	to	be	String.

Booleans
For	Boolean	algebra,	Kotlin	provides	operators	such	as:

!	(not)	logically	negates	the	value	(turns	true	to	false	and	vice-versa).



&&	(and)	returns	true	only	if	both	conditions	are	true.
||	(or)	returns	true	if	at	least	one	of	the	conditions	is	true.

//	Summary1/Booleans.kt

fun	main()	{

		val	opens	=	9

		val	closes	=	20

		println("Operating	hours:	$opens	-	$closes")

		val	hour	=	6

		println("Current	time:	"	+	hour)

		val	isOpen	=	hour	>=	opens	&&	hour	<=	closes

		println("Open:	"	+	isOpen)

		println("Not	open:	"	+	!isOpen)

		val	isClosed	=	hour	<	opens	||	hour	>	closes

		println("Closed:	"	+	isClosed)

}

/*	Output:

Operating	hours:	9	-	20

Current	time:	6

Open:	false

Not	open:	true

Closed:	true

*/

isOpen’s	initializer	uses	&&	to	test	whether	both	conditions	are	true.	The	first
condition	hour	>=	opens	is	false,	so	the	result	of	the	entire	expression
becomes	false.	The	initializer	for	isClosed	uses	||,	producing	true	if	at	least
one	of	the	conditions	is	true.	The	expression	hour	<	opens	is	true,	so	the
whole	expression	is	true.

if	Expressions
Because	if	is	an	expression,	it	produces	a	result.	This	result	can	be	assigned	to	a
var	or	val.	Here,	you	also	see	the	use	of	the	else	keyword:

//	Summary1/IfResult.kt

fun	main()	{

		val	result	=	if	(99	<	100)	4	else	42

		println(result)

}

/*	Output:

4

*/

Either	branch	of	an	if	expression	can	be	a	multiline	block	of	code	surrounded	by
curly	braces:

//	Summary1/IfExpression.kt



fun	main()	{

		val	activity	=	"swimming"

		val	hour	=	10

		val	isOpen	=	if	(

				activity	==	"swimming"	||

				activity	==	"ice	skating")	{

				val	opens	=	9

				val	closes	=	20

				println("Operating	hours:	"	+

						opens	+	"	-	"	+	closes)

				hour	>=	opens	&&	hour	<=	closes

		}	else	{

				false

		}

		println(isOpen)

}

/*	Output:

Operating	hours:	9	-	20

true

*/

A	value	defined	inside	a	block	of	code,	such	as	opens,	is	not	accessible	outside
the	scope	of	that	block.	Because	they	are	defined	globally	to	the	if	expression,
activity	and	hour	are	accessible	inside	the	if	expression.

The	result	of	an	if	expression	is	the	result	of	the	last	expression	of	the	chosen
branch.	Here,	it’s	hour	>=	opens	&&	hour	<=	closes	which	is	true.

String	Templates
You	can	insert	a	value	within	a	String	using	String	templates.	Use	a	$	before
the	identifier	name:

//	Summary1/StrTemplates.kt

fun	main()	{

		val	answer	=	42

		println("Found	$answer!")												//	[1]

		val	condition	=	true

		println(

				"${if	(condition)	'a'	else	'b'}")		//	[2]

		println("printing	a	$1")													//	[3]

}

/*	Output:

Found	42!

a

printing	a	$1

*/

[1]	$answer	substitutes	the	value	contained	in	answer.
[2]	${if(condition)	'a'	else	'b'}	evaluates	and	substitutes	the	result	of
the	expression	inside	${}.



[3]	If	the	$	is	followed	by	anything	unrecognizable	as	a	program	identifier,
nothing	special	happens.

Use	triple-quoted	Strings	to	store	multiline	text	or	text	with	special	characters:

//	Summary1/ThreeQuotes.kt

fun	json(q:	String,	a:	Int)	=	"""{

		"question"	:	"$q",

		"answer"	:	$a

}"""

fun	main()	{

		println(json("The	Ultimate",	42))

}

/*	Output:

{

		"question"	:	"The	Ultimate",

		"answer"	:	42

}

*/

You	don’t	need	to	escape	special	characters	like	"	within	a	triple-quoted	String.
(In	a	regular	String	you	write	\"	to	insert	a	double	quote).	As	with	normal
Strings,	you	can	insert	an	identifier	or	an	expression	using	$	inside	a	triple-
quoted	String.

Number	Types
Kotlin	provides	integer	types	(Int,	Long)	and	floating	point	types	(Double).	A
whole	number	constant	is	Int	by	default	and	Long	if	you	append	an	L.	A	constant
is	Double	if	it	contains	a	decimal	point:

//	Summary1/NumberTypes.kt

fun	main()	{

		val	n	=	1000				//	Int

		val	l	=	1000L			//	Long

		val	d	=	1000.0		//	Double

		println("$n	$l	$d")

}

/*	Output:

1000	1000	1000.0

*/

An	Int	holds	values	between	-231	and	+231-1.	Integral	values	can	overflow;	for
example,	adding	anything	to	Int.MAX_VALUE	produces	an	overflow:

//	Summary1/Overflow.kt

fun	main()	{

		println(Int.MAX_VALUE	+	1)



		println(Int.MAX_VALUE	+	1L)

}

/*	Output:

-2147483648

2147483648

*/

In	the	second	println()	statement	we	append	L	to	1,	forcing	the	whole
expression	to	be	of	type	Long,	which	avoids	the	overflow.	(A	Long	can	hold
values	between	-263	and	+263-1).

When	you	divide	an	Int	with	another	Int,	Kotlin	produces	an	Int	result,	and
any	remainder	is	truncated.	So	1/2	produces	0.	If	a	Double	is	involved,	the	Int	is
promoted	to	Double	before	the	operation,	so	1.0/2	produces	0.5.

You	might	expect	d1	in	the	following	to	produce	3.4:

//	Summary1/Truncation.kt

fun	main()	{

		val	d1:	Double	=	3.0	+	2	/	5

		println(d1)

		val	d2:	Double	=	3	+	2.0	/	5

		println(d2)

}

/*	Output:

3.0

3.4

*/

Because	of	evaluation	order,	it	doesn’t.	Kotlin	first	divides	2	by	5,	and	integer
math	produces	0,	yielding	an	answer	of	3.0.	The	same	evaluation	order	does
produce	the	expected	result	for	d2.	Dividing	2.0	by	5	produces	0.4.	The	3	is
promoted	to	a	Double	because	we	add	it	to	a	Double	(0.4),	which	produces	3.4.

Understanding	evaluation	order	helps	you	to	decipher	what	a	program	does,	both
with	logical	operations	(Boolean	expressions)	and	with	mathematical	operations.
If	you’re	unsure	about	evaluation	order,	use	parentheses	to	force	your	intention.
This	also	makes	it	clear	to	those	reading	your	code.

Repetition	with	while
A	while	loop	continues	as	long	as	the	controlling	Boolean-expression	produces
true:

while	(Boolean-expression)	{

		//	Code	to	be	repeated

}



The	Boolean	expression	is	evaluated	once	at	the	beginning	of	the	loop	and	again
before	each	further	iteration.

//	Summary1/While.kt

fun	testCondition(i:	Int)	=	i	<	100

fun	main()	{

		var	i	=	0

		while	(testCondition(i))	{

				print(".")

				i	+=	10

		}

}

/*	Output:

..........

*/

Kotlin	infers	Boolean	as	the	result	type	for	testCondition().

The	short	versions	of	assignment	operators	are	available	for	all	mathematical
operations	(+=,	-=,	*=,	/=,	%=).	Kotlin	also	supports	the	increment	and	decrement
operators	++	and	--,	in	both	prefix	and	postfix	form.

while	can	be	used	with	the	do	keyword:

do	{

		//	Code	to	be	repeated

}	while	(Boolean-expression)

Rewriting	While.kt:

//	Summary1/DoWhile.kt

fun	main()	{

		var	i	=	0

		do	{

				print(".")

				i	+=	10

		}	while	(testCondition(i))

}

/*	Output:

..........

*/

The	sole	difference	between	while	and	do-while	is	that	the	body	of	the	do-
while	always	executes	at	least	once,	even	if	the	Boolean	expression	produces
false	the	first	time.

Looping	&	Ranges



Many	programming	languages	index	into	an	iterable	object	by	stepping	through
integers.	Kotlin’s	for	allows	you	to	take	elements	directly	from	iterable	objects
like	ranges	and	Strings.	For	example,	this	for	selects	each	character	in	the
String	"Kotlin":

//	Summary1/StringIteration.kt

fun	main()	{

		for	(c	in	"Kotlin")	{

				print("$c	")

				//	c	+=	1	//	error:

				//	val	cannot	be	reassigned

		}

}

/*	Output:

K	o	t	l	i	n

*/

c	can’t	be	explicitly	defined	as	either	a	var	or	val—Kotlin	automatically	makes
it	a	val	and	infers	its	type	as	Char	(you	can	provide	the	type	explicitly,	but	in
practice	this	is	rarely	done).

You	can	step	through	integral	values	using	ranges:

//	Summary1/RangeOfInt.kt

fun	main()	{

		for	(i	in	1..10)	{

				print("$i	")

		}

}

/*	Output:

1	2	3	4	5	6	7	8	9	10

*/

Creating	a	range	with	..	includes	both	bounds,	but	until	excludes	the	top
endpoint:	1	until	10	is	the	same	as	1..9.	You	can	specify	an	increment	value
using	step:	1..21	step	3.

The	in	Keyword
The	same	in	that	provides	for	loop	iteration	also	allows	you	to	check
membership	in	a	range.	!in	returns	true	if	the	tested	value	isn’t	in	the	range:

//	Summary1/Membership.kt

fun	inNumRange(n:	Int)	=	n	in	50..100

fun	notLowerCase(ch:	Char)	=	ch	!in	'a'..'z'

fun	main()	{



		val	i1	=	11

		val	i2	=	100

		val	c1	=	'K'

		val	c2	=	'k'

		println("$i1	${inNumRange(i1)}")

		println("$i2	${inNumRange(i2)}")

		println("$c1	${notLowerCase(c1)}")

		println("$c2	${notLowerCase(c2)}")

}

/*	Output:

11	false

100	true

K	true

k	false

*/

in	can	also	be	used	to	test	membership	in	floating-point	ranges,	although	such
ranges	can	only	be	defined	using	..	and	not	until.

Expressions	&	Statements
The	smallest	useful	fragment	of	code	in	most	programming	languages	is	either	a
statement	or	an	expression.	These	have	one	basic	difference:

A	statement	changes	state.
An	expression	expresses.

That	is,	an	expression	produces	a	result,	while	a	statement	does	not.	Because	it
doesn’t	return	anything,	a	statement	must	change	the	state	of	its	surroundings
(that	is,	create	a	side	effect)	to	do	anything	useful.

Almost	everything	in	Kotlin	is	an	expression:

val	hours	=	10

val	minutesPerHour	=	60

val	minutes	=	hours	*	minutesPerHour

In	each	case,	everything	to	the	right	of	the	=	is	an	expression,	which	produces	a
result	that	is	assigned	to	the	identifier	on	the	left.

Functions	like	println()	don’t	seem	to	produce	a	result,	but	because	they	are
still	expressions,	they	must	return	something.	Kotlin	has	a	special	Unit	type	for
these:

//	Summary1/UnitReturn.kt

fun	main()	{

		val	result	=	println("returns	Unit")

		println(result)



}

/*	Output:

returns	Unit

kotlin.Unit

*/

Experienced	programmers	should	go	to	Summary	2	after	working	the	exercises
for	this	atom.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



SECTION	II:	INTRODUCTION	TO	OBJECTS

Objects	are	the	foundation	for	numerous	modern	languages,	including
Kotlin.

In	an	object-oriented	(OO)	programming	language,	you	discover	“nouns”	in	the
problem	you’re	solving,	and	translate	those	nouns	to	objects.	Objects	hold	data
and	perform	actions.	An	object-oriented	language	creates	and	uses	objects.

Kotlin	isn’t	just	object-oriented;	it’s	also	functional.	Functional	languages	focus
on	the	actions	you	perform	(“verbs”).	Kotlin	is	a	hybrid	object-functional
language.

This	section	explains	the	basics	of	object-oriented	programming.
Section	IV:	Functional	Programming	introduces	functional	programming.
Section	V:	Object-Oriented	Programming	covers	object-oriented
programming	in	detail.



Objects	Everywhere

Objects	store	data	using	properties	(vals	and	vars)	and	perform	operations
with	this	data	using	functions.

Some	definitions:

Class:	Defines	properties	and	functions	for	what	is	essentially	a	new	data
type.	Classes	are	also	called	user-defined	types.
Member:	Either	a	property	or	a	function	of	a	class.
Member	function:	A	function	that	works	only	with	a	specific	class	of	object.
Creating	an	object:	Making	a	val	or	var	of	a	class.	Also	called	creating	an
instance	of	that	class.

Because	classes	define	state	and	behavior,	we	can	even	refer	to	instances	of
built-in	types	like	Double	or	Boolean	as	objects.

Consider	Kotlin’s	IntRange	class:

//	ObjectsEverywhere/IntRanges.kt

fun	main()	{

		val	r1	=	IntRange(0,	10)

		val	r2	=	IntRange(5,	7)

		println(r1)

		println(r2)

}

/*	Output:

0..10

5..7

*/

We	create	two	objects	(instances)	of	the	IntRange	class.	Each	object	has	its	own
piece	of	storage	in	memory.	IntRange	is	a	class,	but	a	particular	range	r1	from	0
to	10	is	an	object	that	is	distinct	from	range	r2.

Numerous	operations	are	available	for	an	IntRange	object.	Some	are
straightforward,	like	sum(),	and	others	require	more	understanding	before	you
can	use	them.	If	you	try	calling	one	that	needs	arguments,	the	IDE	will	ask	for
those	arguments.



To	learn	about	a	particular	member	function,	look	it	up	in	the	Kotlin
documentation.	Notice	the	magnifying	glass	icon	in	the	top	right	area	of	the
page.	Click	on	that	and	type	IntRange	into	the	search	box.	Click	on
kotlin.ranges	>	IntRange	from	the	resulting	search.	You’ll	see	the
documentation	for	the	IntRange	class.	You	can	study	all	the	member	functions—
the	Application	Programming	Interface	(API)—of	the	class.	Although	you	won’t
understand	most	of	it	at	this	time,	it’s	helpful	to	become	comfortable	looking
things	up	in	the	Kotlin	documentation.

An	IntRange	is	a	kind	of	object,	and	a	defining	characteristic	of	an	object	is	that
you	perform	operations	on	it.	Instead	of	“performing	an	operation,”	we	say
calling	a	member	function.	To	call	a	member	function	for	an	object,	start	with
the	object	identifier,	then	a	dot,	then	the	name	of	the	operation:

//	ObjectsEverywhere/RangeSum.kt

fun	main()	{

		val	r	=	IntRange(0,	10)

		println(r.sum())

}

/*	Output:

55

*/

Because	sum()	is	a	member	function	defined	for	IntRange,	you	call	it	by	saying
r.sum().	This	adds	up	all	the	numbers	in	that	IntRange.

Earlier	object-oriented	languages	used	the	phrase	“sending	a	message”	to
describe	calling	a	member	function	for	an	object.	Sometimes	you’ll	still	see	that
terminology.

Classes	can	have	many	operations	(member	functions).	It’s	easy	to	explore
classes	using	an	IDE	(integrated	development	environment)	that	includes	a
feature	called	code	completion.	For	example,	if	you	type	.s	after	an	object
identifier	within	IntelliJ	IDEA,	it	shows	all	the	members	of	that	object	that	begin
with	s:

https://kotlinlang.org/api/latest/jvm/stdlib/index.html


Code	Completion

Try	using	code	completion	on	other	objects.	For	example,	you	can	reverse	a
String	or	convert	all	the	characters	to	lower	case:

//	ObjectsEverywhere/Strings.kt

fun	main()	{

		val	s	=	"AbcD"

		println(s.reversed())

		println(s.toLowerCase())

}

/*	Output:

DcbA

abcd

*/

You	can	easily	convert	a	String	to	an	integer	and	back:

//	ObjectsEverywhere/Conversion.kt

fun	main()	{

		val	s	=	"123"

		println(s.toInt())

		val	i	=	123

		println(i.toString())

}

/*	Output:

123

123

*/

Later	in	the	book	we	discuss	strategies	to	handle	situations	when	the	String	you
want	to	convert	doesn’t	represent	a	correct	integer	value.



You	can	also	convert	from	one	numerical	type	to	another.	To	avoid	confusion,
conversions	between	number	types	are	explicit.	For	example,	you	convert	an	Int
i	to	a	Long	by	calling	i.toLong(),	or	to	a	Double	with	i.toDouble():

//	ObjectsEverywhere/NumberConversions.kt

fun	fraction(numerator:	Long,	denom:	Long)	=

		numerator.toDouble()	/	denom

fun	main()	{

		val	num	=	1

		val	den	=	2

		val	f	=	fraction(num.toLong(),	den.toLong())

		println(f)

}

/*	Output:

0.5

*/

Well-defined	classes	are	easy	for	a	programmer	to	understand,	and	produce	code
that’s	easy	to	read.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Creating	Classes

Not	only	can	you	use	predefined	types	like	IntRange	and	String,	you	can
also	create	your	own	types	of	objects.

Indeed,	creating	new	types	comprises	much	of	the	activity	in	object-oriented
programming.	You	create	new	types	by	defining	classes.

An	object	is	a	piece	of	the	solution	for	a	problem	you’re	trying	to	solve.	Start	by
thinking	of	objects	as	expressing	concepts.	As	a	first	approximation,	if	you
discover	a	“thing”	in	your	problem,	represent	that	thing	as	an	object	in	your
solution.

Suppose	you	want	to	create	a	program	to	manage	animals	in	a	zoo.	It	makes
sense	to	categorize	the	different	types	of	animals	based	on	how	they	behave,
their	needs,	animals	they	get	along	with	and	those	they	fight	with.	Everything
different	about	a	species	of	animal	is	captured	in	the	classification	of	that
animal’s	object.	Kotlin	uses	the	class	keyword	to	create	a	new	type	of	object:

//	CreatingClasses/Animals.kt

//	Create	some	classes:

class	Giraffe

class	Bear

class	Hippo

fun	main()	{

		//	Create	some	objects:

		val	g1	=	Giraffe()

		val	g2	=	Giraffe()

		val	b	=	Bear()

		val	h	=	Hippo()

		//	Each	object()	is	unique:

		println(g1)

		println(g2)

		println(h)

		println(b)

}

/*	Sample	output:

Giraffe@28d93b30

Giraffe@1b6d3586

Hippo@4554617c

Bear@74a14482

*/



To	define	a	class,	start	with	the	class	keyword,	followed	by	an	identifier	for
your	new	class.	The	class	name	must	begin	with	a	letter	(A-Z,	upper	or	lower
case),	but	can	include	things	like	numbers	and	underscores.	Following
convention,	we	capitalize	the	first	letter	of	a	class	name,	and	lowercase	the	first
letter	of	all	vals	and	vars.

Animals.kt	starts	by	defining	three	new	classes,	then	creates	four	objects	(also
called	instances)	of	those	classes.

Giraffe	is	a	class,	but	a	particular	five-year-old	male	giraffe	that	lives	in
Botswana	is	an	object.	Each	object	is	different	from	all	others,	so	we	give	them
names	like	g1	and	g2.

Notice	the	rather	cryptic	output	of	the	last	four	lines.	The	part	before	the	@	is	the
class	name,	and	the	number	after	the	@	is	the	address	where	the	object	is	located
in	your	computer’s	memory.	Yes,	that’s	a	number	even	though	it	includes	some
letters—it’s	called	“hexadecimal	notation”.	Every	object	in	your	program	has	its
own	unique	address.

The	classes	defined	here	(Giraffe,	Bear,	and	Hippo)	are	as	simple	as	possible:
the	entire	class	definition	is	a	single	line.	More	complex	classes	use	curly	braces
({	and	})	to	create	a	class	body	containing	the	characteristics	and	behaviors	for
that	class.

A	function	defined	within	a	class	belongs	to	that	class.	In	Kotlin,	we	call	these
member	functions	of	the	class.	Some	object-oriented	languages	like	Java	choose
to	call	them	methods,	a	term	that	came	from	early	object-oriented	languages	like
Smalltalk.	To	emphasize	the	functional	nature	of	Kotlin,	the	designers	chose	to
drop	the	term	method,	as	some	beginners	found	the	distinction	confusing.
Instead,	the	term	function	is	used	throughout	the	language.

If	it	is	unambiguous,	we	will	just	say	“function.”	If	we	must	make	the
distinction:

Member	functions	belong	to	a	class.
Top-level	functions	exist	by	themselves	and	are	not	part	of	a	class.

Here,	bark()	belongs	to	the	Dog	class:

//	CreatingClasses/Dog.kt

https://en.wikipedia.org/wiki/Hexadecimal


class	Dog	{

		fun	bark()	=	"yip!"

}

fun	main()	{

		val	dog	=	Dog()

}

In	main(),	we	create	a	Dog	object	and	assign	it	to	val	dog.	Kotlin	emits	a
warning	because	we	never	use	dog.

Member	functions	are	called	(invoked)	with	the	object	name,	followed	by	a	.
(dot/period),	followed	by	the	function	name	and	parameter	list.	Here	we	call	the
meow()	function	and	display	the	result:

//	CreatingClasses/Cat.kt

class	Cat	{

		fun	meow()	=	"mrrrow!"

}

fun	main()	{

		val	cat	=	Cat()

		//	Call	'meow()'	for	'cat':

		val	m1	=	cat.meow()

		println(m1)

}

/*	Output:

mrrrow!

*/

A	member	function	acts	on	a	particular	instance	of	a	class.	When	you	call
meow(),	you	must	call	it	with	an	object.	During	the	call,	meow()	can	access	other
members	of	that	object.

When	calling	a	member	function,	Kotlin	keeps	track	of	the	object	of	interest	by
silently	passing	a	reference	to	that	object.	That	reference	is	available	inside	the
member	function	by	using	the	keyword	this.

Member	functions	have	special	access	to	other	elements	within	a	class,	simply
by	naming	those	elements.	You	can	also	explicitly	qualify	access	to	those
elements	using	this.	Here,	exercise()	calls	speak()	with	and	without
qualification:

//	CreatingClasses/Hamster.kt

class	Hamster	{

		fun	speak()	=	"Squeak!	"

		fun	exercise()	=

				this.speak()	+			//	Qualified	with	'this'

						speak()	+						//	Without	'this'



						"Running	on	wheel"

}

fun	main()	{

		val	hamster	=	Hamster()

		println(hamster.exercise())

}

/*	Output:

Squeak!	Squeak!	Running	on	wheel

*/

In	exercise(),	we	call	speak()	first	with	an	explicit	this	and	then	omit	the
qualification.

Sometimes	you’ll	see	code	containing	an	unnecessary	explicit	this.	That	kind	of
code	often	comes	from	programmers	who	know	a	different	language	where	this
is	either	required,	or	part	of	its	style.	Using	a	feature	unnecessarily	is	confusing
for	the	reader,	who	spends	time	trying	to	figure	out	why	you’re	doing	it.	We
recommend	avoiding	the	unnecessary	use	of	this.

Outside	the	class,	you	must	say	hamster.exercise()	and	hamster.speak().

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Properties

A	property	is	a	var	or	val	that’s	part	of	a	class.

Defining	a	property	maintains	state	within	a	class.	Maintaining	state	is	the
primary	motivating	reason	for	creating	a	class	rather	than	just	writing	one	or
more	standalone	functions.

A	var	property	can	be	reassigned,	while	a	val	property	can’t.	Each	object	gets
its	own	storage	for	properties:

//	Properties/Cup.kt

class	Cup	{

		var	percentFull	=	0

}

fun	main()	{

		val	c1	=	Cup()

		c1.percentFull	=	50

		val	c2	=	Cup()

		c2.percentFull	=	100

		println(c1.percentFull)

		println(c2.percentFull)

}

/*	Output:

50

100

*/

Defining	a	var	or	val	inside	a	class	looks	just	like	defining	it	within	a	function.
However,	the	var	or	val	becomes	part	of	that	class,	and	you	must	refer	to	it	by
specifying	its	object	using	dot	notation,	placing	a	dot	between	the	object	and	the
name	of	the	property.	You	can	see	dot	notation	used	for	each	reference	to
percentFull.

The	percentFull	property	represents	the	state	of	the	corresponding	Cup	object.
c1.percentFull	and	c2.percentFull	contain	different	values,	showing	that
each	object	has	its	own	storage.

A	member	function	can	refer	to	a	property	within	its	object	without	using	dot
notation	(that	is,	without	qualifying	it):



//	Properties/Cup2.kt

class	Cup2	{

		var	percentFull	=	0

		val	max	=	100

		fun	add(increase:	Int):	Int	{

				percentFull	+=	increase

				if	(percentFull	>	max)

						percentFull	=	max

				return	percentFull

		}

}

fun	main()	{

		val	cup	=	Cup2()

		cup.add(50)

		println(cup.percentFull)

		cup.add(70)

		println(cup.percentFull)

}

/*	Output:

50

100

*/

The	add()	member	function	tries	to	add	increase	to	percentFull	but	ensures
that	it	doesn’t	go	past	100%.

You	must	qualify	both	properties	and	member	functions	from	outside	a	class.

You	can	define	top-level	properties:

//	Properties/TopLevelProperty.kt

val	constant	=	42

var	counter	=	0

fun	inc()	{

		counter++

}

Defining	a	top-level	val	is	safe	because	it	cannot	be	modified.	However,
defining	a	mutable	(var)	top-level	property	is	considered	an	anti-pattern.	As
your	program	becomes	more	complicated,	it	becomes	harder	to	reason	correctly
about	shared	mutable	state.	If	everyone	in	your	code	base	can	access	the	var
counter,	you	can’t	guarantee	it	will	change	correctly:	while	inc()	increases
counter	by	one,	some	other	part	of	the	program	might	decrease	counter	by	ten,
producing	obscure	bugs.	It’s	best	to	guard	mutable	state	within	a	class.	In
Constraining	Visibility	you’ll	see	how	to	make	it	truly	hidden.



To	say	that	vars	can	be	changed	while	vals	cannot	is	an	oversimplification.	As
an	analogy,	consider	a	house	as	a	val,	and	a	sofa	inside	the	house	as	a	var.	You
can	modify	sofa	because	it’s	a	var.	You	can’t	reassign	house,	though,	because
it’s	a	val:

//	Properties/ChangingAVal.kt

class	House	{

		var	sofa:	String	=	""

}

fun	main()	{

		val	house	=	House()

		house.sofa	=	"Simple	sleeper	sofa:	$89.00"

		println(house.sofa)

		house.sofa	=	"New	leather	sofa:	$3,099.00"

		println(house.sofa)

		//	Cannot	reassign	the	val	to	a	new	House:

		//	house	=	House()

}

/*	Output:

Simple	sleeper	sofa:	$89.00

New	leather	sofa:	$3,099.00

*/

Although	house	is	a	val,	its	object	can	be	modified	because	sofa	in	class
House	is	a	var.	Defining	house	as	a	val	only	prevents	it	from	being	reassigned	to
a	new	object.

If	we	make	a	property	a	val,	it	cannot	be	reassigned:

//	Properties/AnUnchangingVar.kt

class	Sofa	{

		val	cover:	String	=	"Loveseat	cover"

}

fun	main()	{

		var	sofa	=	Sofa()

		//	Not	allowed:

		//	sofa.cover	=	"New	cover"

		//	Reassigning	a	var:

		sofa	=	Sofa()

}

Even	though	sofa	is	a	var,	its	object	cannot	be	modified	because	cover	in	class
Sofa	is	a	val.	However,	sofa	can	be	reassigned	to	a	new	object.

We’ve	talked	about	identifiers	like	house	and	sofa	as	if	they	were	objects.	They
are	actually	references	to	objects.	One	way	to	see	this	is	to	observe	that	two
identifiers	can	refer	to	the	same	object:



//	Properties/References.kt

class	Kitchen	{

		var	table:	String	=	"Round	table"

}

fun	main()	{

		val	kitchen1	=	Kitchen()

		val	kitchen2	=	kitchen1

		println("kitchen1:	${kitchen1.table}")

		println("kitchen2:	${kitchen2.table}")

		kitchen1.table	=	"Square	table"

		println("kitchen1:	${kitchen1.table}")

		println("kitchen2:	${kitchen2.table}")

}

/*	Output:

kitchen1:	Round	table

kitchen2:	Round	table

kitchen1:	Square	table

kitchen2:	Square	table

*/

When	kitchen1	modifies	table,	kitchen2	sees	the	modification.
kitchen1.table	and	kitchen2.table	display	the	same	output.

Remember	that	var	and	val	control	references	rather	than	objects.	A	var	allows
you	to	rebind	a	reference	to	a	different	object,	and	a	val	prevents	you	from
doing	so.

Mutability	means	an	object	can	change	its	state.	In	the	examples	above,	class
House	and	class	Kitchen	define	mutable	objects	while	class	Sofa	defines
immutable	objects.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Constructors

You	initialize	a	new	object	by	passing	information	to	a	constructor.

Each	object	is	an	isolated	world.	A	program	is	a	collection	of	objects,	so	correct
initialization	of	each	individual	object	solves	a	large	part	of	the	initialization
problem.	Kotlin	includes	mechanisms	to	guarantee	proper	object	initialization.

A	constructor	is	like	a	special	member	function	that	initializes	a	new	object.	The
simplest	form	of	a	constructor	is	a	single-line	class	definition:

//	Constructors/Wombat.kt

class	Wombat

fun	main()	{

		val	wombat	=	Wombat()

}

In	main(),	calling	Wombat()	creates	a	Wombat	object.	If	you	are	coming	from
another	object-oriented	language	you	might	expect	to	see	a	new	keyword	used
here,	but	new	would	be	redundant	in	Kotlin	so	it	was	omitted.

You	pass	information	to	a	constructor	using	a	parameter	list,	just	like	a	function.
Here,	the	Alien	constructor	takes	a	single	argument:

//	Constructors/Arg.kt

class	Alien(name:	String)	{

		val	greeting	=	"Poor	$name!"

}

fun	main()	{

		val	alien	=	Alien("Mr.	Meeseeks")

		println(alien.greeting)

		//	alien.name	//	Error					//	[1]

}

/*	Output:

Poor	Mr.	Meeseeks!

*/

Creating	an	Alien	object	requires	the	argument	(try	it	without	one).	name
initializes	the	greeting	property	within	the	constructor,	but	it	is	not	accessible
outside	the	constructor—try	uncommenting	line	[1].



If	you	want	the	constructor	parameter	to	be	accessible	outside	the	class	body,
define	it	as	a	var	or	val	in	the	parameter	list:

//	Constructors/VisibleArgs.kt

class	MutableNameAlien(var	name:	String)

class	FixedNameAlien(val	name:	String)

fun	main()	{

		val	alien1	=

				MutableNameAlien("Reverse	Giraffe")

		val	alien2	=

				FixedNameAlien("Krombopolis	Michael")

		alien1.name	=	"Parasite"

		//	Can't	do	this:

		//	alien2.name	=	"Parasite"

}

These	class	definitions	have	no	explicit	class	bodies—the	bodies	are	implied.

When	name	is	defined	as	a	var	or	val,	it	becomes	a	property	and	is	thus
accessible	outside	the	constructor.	val	constructor	parameters	cannot	be
changed,	while	var	constructor	parameters	are	mutable.

Your	class	can	have	numerous	constructor	parameters:

//	Constructors/MultipleArgs.kt

class	AlienSpecies(

		val	name:	String,

		val	eyes:	Int,

		val	hands:	Int,

		val	legs:	Int

)	{

		fun	describe()	=

				"$name	with	$eyes	eyes,	"	+

						"$hands	hands	and	$legs	legs"

}

fun	main()	{

		val	kevin	=

				AlienSpecies("Zigerion",	2,	2,	2)

		val	mortyJr	=

				AlienSpecies("Gazorpian",	2,	6,	2)

		println(kevin.describe())

		println(mortyJr.describe())

}

/*	Output:

Zigerion	with	2	eyes,	2	hands	and	2	legs

Gazorpian	with	2	eyes,	6	hands	and	2	legs

*/



In	Complex	Constructors,	you’ll	see	that	constructors	can	also	contain	complex
initialization	logic.

If	an	object	is	used	when	a	String	is	expected,	Kotlin	calls	the	object’s
toString()	member	function.	If	you	don’t	write	one,	you	still	get	a	default
toString():

//	Constructors/DisplayAlienSpecies.kt

fun	main()	{

		val	krombopulosMichael	=

				AlienSpecies("Gromflomite",	2,	2,	2)

		println(krombopulosMichael)

}

/*	Sample	output:

AlienSpecies@4d7e1886

*/

The	default	toString()	isn’t	very	useful—it	produces	the	class	name	and	the
physical	address	of	the	object	(this	varies	from	one	program	execution	to	the
next).	You	can	define	your	own	toString():

//	Constructors/Scientist.kt

class	Scientist(val	name:	String)	{

		override	fun	toString():	String	{

				return	"Scientist('$name')"

		}

}

fun	main()	{

		val	zeep	=	Scientist("Zeep	Xanflorp")

		println(zeep)

}

/*	Output:

Scientist('Zeep	Xanflorp')

*/

override	is	a	new	keyword	for	us.	It	is	required	here	because	toString()
already	has	a	definition,	the	one	producing	the	primitive	result.	override	tells
Kotlin	that	yes,	we	do	actually	want	to	replace	the	default	toString()	with	our
own	definition.	The	explicitness	of	override	clarifies	the	code	and	prevents
mistakes.

A	toString()	that	displays	the	contents	of	an	object	in	a	convenient	form	is
useful	for	finding	and	fixing	programming	errors.	To	simplify	the	process	of
debugging,	IDEs	provide	debuggers	that	allow	you	to	observe	each	step	in	the
execution	of	a	program	and	to	see	inside	your	objects.

https://www.jetbrains.com/help/idea/debugging-code.html


Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Constraining	Visibility

If	you	leave	a	piece	of	code	for	a	few	days	or	weeks,	then	come	back	to	it,
you	might	see	a	much	better	way	to	write	it.

This	is	one	of	the	prime	motivations	for	refactoring,	which	rewrites	working
code	to	make	it	more	readable,	understandable,	and	thus	maintainable.

There	is	a	tension	in	this	desire	to	change	and	improve	your	code.	Consumers
(client	programmers)	require	aspects	of	your	code	to	be	stable.	You	want	to
change	it,	and	they	want	it	to	stay	the	same.

This	is	particularly	important	for	libraries.	Consumers	of	a	library	don’t	want	to
rewrite	code	for	a	new	version	of	that	library.	However,	the	library	creator	must
be	free	to	make	modifications	and	improvements,	with	the	certainty	that	the
client	code	won’t	be	affected	by	those	changes.

Therefore,	a	primary	consideration	in	software	design	is:

Separate	things	that	change	from	things	that	stay	the	same.

To	control	visibility,	Kotlin	and	some	other	languages	provide	access	modifiers.
Library	creators	decide	what	is	and	is	not	accessible	by	the	client	programmer
using	the	modifiers	public,	private,	protected,	and	internal.	This	atom
covers	public	and	private,	with	a	brief	introduction	to	internal.	We	explain
protected	later	in	the	book.

An	access	modifier	such	as	private	appears	before	the	definition	for	a	class,
function,	or	property.	An	access	modifier	only	controls	access	for	that	particular
definition.

A	public	definition	is	accessible	by	client	programmers,	so	changes	to	that
definition	impact	client	code	directly.	If	you	don’t	provide	a	modifier,	your
definition	is	automatically	public,	so	public	is	technically	redundant.	You	will
sometimes	still	specify	public	for	the	sake	of	clarity.



A	private	definition	is	hidden	and	only	accessible	from	other	members	of	the
same	class.	Changing,	or	even	removing,	a	private	definition	doesn’t	directly
impact	client	programmers.

private	classes,	top-level	functions,	and	top-level	properties	are	accessible	only
inside	that	file:

//	Visibility/RecordAnimals.kt

private	var	index	=	0																		//	[1]

private	class	Animal(val	name:	String)	//	[2]

private	fun	recordAnimal(														//	[3]

		animal:	Animal

)	{

		println("Animal	#$index:	${animal.name}")

		index++

}

fun	recordAnimals()	{

		recordAnimal(Animal("Tiger"))

		recordAnimal(Animal("Antelope"))

}

fun	recordAnimalsCount()	{

		println("$index	animals	are	here!")

}

You	can	access	private	top-level	properties	([1]),	classes	([2]),	and	functions
([3])	from	other	functions	and	classes	within	RecordAnimals.kt.	Kotlin	prevents
you	from	accessing	a	private	top-level	element	from	within	another	file,	telling
you	it’s	private	in	the	file:

//	Visibility/ObserveAnimals.kt

fun	main()	{

		//	Can't	access	private	members

		//	declared	in	another	file.

		//	Class	is	private:

		//	val	rabbit	=	Animal("Rabbit")

		//	Function	is	private:

		//	recordAnimal(rabbit)

		//	Property	is	private:

		//	index++

		recordAnimals()

		recordAnimalsCount()

}

/*	Output:

Animal	#0:	Tiger

Animal	#1:	Antelope

2	animals	are	here!

*/



Privacy	is	most	commonly	used	for	members	of	a	class:

//	Visibility/Cookie.kt

class	Cookie(

		private	var	isReady:	Boolean		//	[1]

)	{

		private	fun	crumble()	=							//	[2]

				println("crumble")

		public	fun	bite()	=											//	[3]

				println("bite")

		fun	eat()	{																			//	[4]

				isReady	=	true														//	[5]

				crumble()

				bite()

		}

}

fun	main()	{

		val	x	=	Cookie(false)

		x.bite()

		//	Can't	access	private	members:

		//	x.isReady

		//	x.crumble()

		x.eat()

}

/*	Output:

bite

crumble

bite

*/

[1]	A	private	property,	not	accessible	outside	the	containing	class.
[2]	A	private	member	function.
[3]	A	public	member	function,	accessible	to	anyone.
[4]	No	access	modifier	means	public.
[5]	Only	members	of	the	same	class	can	access	private	members.

The	private	keyword	means	no	one	can	access	that	member	except	other
members	of	that	class.	Other	classes	cannot	access	private	members,	so	it’s	as
if	you’re	also	insulating	the	class	against	yourself	and	your	collaborators.	With
private,	you	can	freely	change	that	member	without	worrying	whether	it	affects
another	class	in	the	same	package.	As	a	library	designer	you’ll	typically	keep
things	as	private	as	possible,	and	expose	only	functions	and	classes	to	client
programmers.

Any	member	function	that	is	a	helper	function	for	a	class	can	be	made	private
to	ensure	you	don’t	accidentally	use	it	elsewhere	in	the	package	and	thus	prohibit
yourself	from	changing	or	removing	that	function.



The	same	is	true	for	a	private	property	inside	a	class.	Unless	you	must	expose
the	underlying	implementation	(which	is	less	likely	than	you	might	think),	make
properties	private.	However,	just	because	a	reference	to	an	object	is	private
inside	a	class	doesn’t	mean	some	other	object	can’t	have	a	public	reference	to
the	same	object:

//	Visibility/MultipleRef.kt

class	Counter(var	start:	Int)	{

		fun	increment()	{

				start	+=	1

		}

		override	fun	toString()	=	start.toString()

}

class	CounterHolder(counter:	Counter)	{

		private	val	ctr	=	counter

		override	fun	toString()	=

				"CounterHolder:	"	+	ctr

}

fun	main()	{

		val	c	=	Counter(11)																	//	[1]

		val	ch	=	CounterHolder(c)											//	[2]

		println(ch)

		c.increment()																							//	[3]

		println(ch)

		val	ch2	=	CounterHolder(Counter(9))	//	[4]

		println(ch2)

}

/*	Output:

CounterHolder:	11

CounterHolder:	12

CounterHolder:	9

*/

[1]	c	is	now	defined	in	the	scope	surrounding	the	creation	of	the
CounterHolder	object	on	the	following	line.
[2]	Passing	c	as	the	argument	to	the	CounterHolder	constructor	means	that
the	new	CounterHolder	now	refers	to	the	same	Counter	object	that	c	refers
to.
[3]	The	Counter	that	is	supposedly	private	inside	ch	can	still	be
manipulated	via	c.
[4]	Counter(9)	has	no	other	references	except	within	CounterHolder,	so	it
cannot	be	accessed	or	modified	by	anything	except	ch2.

Maintaining	multiple	references	to	a	single	object	is	called	aliasing	and	can
produce	surprising	behavior.

Modules



Unlike	the	small	examples	in	this	book,	real	programs	are	often	large.	It	can	be
helpful	to	divide	such	programs	into	one	or	more	modules.	A	module	is	a
logically	independent	part	of	a	codebase.	The	way	you	divide	a	project	into
modules	depends	on	the	build	system	(such	as	Gradle	or	Maven)	and	is	beyond
the	scope	of	this	book.

An	internal	definition	is	accessible	only	inside	the	module	where	it	is	defined.
internal	lands	somewhere	between	private	and	public—use	it	when	private
is	too	restrictive	but	you	don’t	want	an	element	to	be	a	part	of	the	public	API.
We	do	not	use	internal	in	the	book’s	examples	or	exercises.

Modules	are	a	higher-level	concept.	The	following	atom	introduces	packages,
which	enable	finer-grained	structuring.	A	library	is	often	a	single	module
consisting	of	multiple	packages,	so	internal	elements	are	available	within	the
library	but	are	not	accessible	by	consumers	of	that	library.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.

https://gradle.org/
https://maven.apache.org/


Packages

A	fundamental	principle	in	programming	is	the	acronym	DRY:	Don’t
Repeat	Yourself.

Multiple	identical	pieces	of	code	require	maintenance	whenever	you	make	fixes
or	improvements.	So	duplicating	code	is	not	just	extra	work—every	duplication
creates	opportunities	for	mistakes.

The	import	keyword	reuses	code	from	other	files.	One	way	to	use	import	is	to
specify	a	class,	function	or	property	name:

import	packagename.ClassName

import	packagename.functionName

import	packagename.propertyName

A	package	is	an	associated	collection	of	code.	Each	package	is	usually	designed
to	solve	a	particular	problem,	and	often	contains	multiple	functions	and	classes.
For	example,	we	can	import	mathematical	constants	and	functions	from	the
kotlin.math	library:

//	Packages/ImportClass.kt

import	kotlin.math.PI

import	kotlin.math.cos		//	Cosine

fun	main()	{

		println(PI)

		println(cos(PI))

		println(cos(2	*	PI))

}

/*	Output:

3.141592653589793

-1.0

1.0

*/

Sometimes	you	want	to	use	multiple	third-party	libraries	containing	classes	or
functions	with	the	same	name.	The	as	keyword	allows	you	to	change	names
while	importing:

//	Packages/ImportNameChange.kt

import	kotlin.math.PI	as	circleRatio

import	kotlin.math.cos	as	cosine



fun	main()	{

		println(circleRatio)

		println(cosine(circleRatio))

		println(cosine(2	*	circleRatio))

}

/*	Output:

3.141592653589793

-1.0

1.0

*/

as	is	useful	if	a	library	name	is	poorly	chosen	or	excessively	long.

You	can	fully	qualify	an	import	in	the	body	of	your	code.	In	the	following
example,	the	code	might	be	less	readable	due	to	the	explicit	package	names,	but
the	origin	of	each	element	is	absolutely	clear:

//	Packages/FullyQualify.kt

fun	main()	{

		println(kotlin.math.PI)

		println(kotlin.math.cos(kotlin.math.PI))

		println(kotlin.math.cos(2	*	kotlin.math.PI))

}

/*	Output:

3.141592653589793

-1.0

1.0

*/

To	import	everything	from	a	package,	use	a	star:

//	Packages/ImportEverything.kt

import	kotlin.math.*

fun	main()	{

		println(E)

		println(E.roundToInt())

		println(E.toInt())

}

/*	Output:

2.718281828459045

3

2

*/

The	kotlin.math	package	contains	a	convenient	roundToInt()	that	rounds	the
Double	value	to	the	nearest	integer,	unlike	toInt()	which	simply	truncates
anything	after	a	decimal	point.

To	reuse	your	code,	create	a	package	using	the	package	keyword.	The	package
statement	must	be	the	first	non-comment	statement	in	the	file.	package	is
followed	by	the	name	of	your	package,	which	by	convention	is	all	lowercase:



//	Packages/PythagoreanTheorem.kt

package	pythagorean

import	kotlin.math.sqrt

class	RightTriangle(

		val	a:	Double,

		val	b:	Double

)	{

		fun	hypotenuse()	=	sqrt(a	*	a	+	b	*	b)

		fun	area()	=	a	*	b	/	2

}

You	can	name	the	source-code	file	anything	you	like,	unlike	Java	which	requires
the	file	name	to	be	the	same	as	the	class	name.

Kotlin	allows	you	to	choose	any	name	for	your	package,	but	it’s	considered	good
style	for	the	package	name	to	be	identical	to	the	directory	name	where	the
package	files	are	located	(this	will	not	always	be	the	case	for	the	examples	in
this	book).

The	elements	in	the	pythagorean	package	are	now	available	using	import:

//	Packages/ImportPythagorean.kt

import	pythagorean.RightTriangle

fun	main()	{

		val	rt	=	RightTriangle(3.0,	4.0)

		println(rt.hypotenuse())

		println(rt.area())

}

/*	Output:

5.0

6.0

*/

In	the	remainder	of	this	book	we	use	package	statements	for	any	file	that	defines
functions,	classes,	etc.,	outside	of	main(),	to	prevent	name	clashes	with	other
files	in	the	book,	but	we	usually	won’t	put	a	package	statement	in	a	file	that	only
contains	a	main().

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Testing

Constant	testing	is	essential	for	rapid	program	development.

If	changing	one	part	of	your	code	breaks	other	code,	your	tests	reveal	the
problem	right	away.	If	you	don’t	find	out	immediately,	changes	accumulate	and
you	can	no	longer	tell	which	change	caused	the	problem.	You’ll	spend	a	lot
longer	tracking	it	down.

Testing	is	a	crucial	practice,	so	we	introduce	it	early	and	use	it	throughout	the
rest	of	the	book.	This	way,	you	become	accustomed	to	testing	as	a	standard	part
of	the	programming	process.

Using	println()	to	verify	code	correctness	is	a	weak	approach—you	must
scrutinize	the	output	every	time	and	consciously	ensure	that	it’s	correct.

To	simplify	your	experience	while	using	this	book,	we	created	our	own	tiny
testing	system.	The	goal	is	a	minimal	approach	that:

1.	 Shows	the	expected	result	of	expressions.
2.	 Provides	output	so	you	know	the	program	is	running,	even	when	all	tests

succeed.
3.	 Ingrains	the	concept	of	testing	early	in	your	practice.

Although	useful	for	this	book,	ours	is	not	a	testing	system	for	the	workplace.
Others	have	toiled	long	and	hard	to	create	such	test	systems.	For	example:

JUnit	is	one	of	the	most	popular	Java	test	frameworks,	and	is	easily	used
from	within	Kotlin.
Kotest	is	designed	specifically	for	Kotlin,	and	takes	advantage	of	Kotlin
language	features.
The	Spek	Framework	produces	a	different	form	of	testing,	called
Specification	Testing.

To	use	our	testing	framework,	we	must	first	import	it.	The	basic	elements	of	the
framework	are	eq	(equals)	and	neq	(not	equals):

https://junit.org
https://github.com/kotest/kotest
https://spekframework.org/


//	Testing/TestingExample.kt

import	atomictest.*

fun	main()	{

		val	v1	=	11

		val	v2	=	"Ontology"

		//	'eq'	means	"equals":

		v1	eq	11

		v2	eq	"Ontology"

		//	'neq'	means	"not	equal"

		v2	neq	"Epistimology"

		//	[Error]	Epistimology	!=	Ontology

		//	v2	eq	"Epistimology"

}

/*	Output:

11

Ontology

Ontology

*/

The	code	for	the	atomictest	package	is	in	Appendix	A:	AtomicTest.	We	don’t
intend	that	you	understand	everything	in	AtomicTest.kt	right	now,	because	it
uses	some	features	that	won’t	appear	until	later	in	the	book.

To	produce	a	clean,	comfortable	appearance,	AtomicTest	uses	a	Kotlin	feature
you	haven’t	seen	yet:	the	ability	to	write	a	function	call	a.function(b)	in	the
text-like	form	a	function	b.	This	is	called	infix	notation.	Only	functions
defined	using	the	infix	keyword	can	be	called	this	way.	AtomicTest.kt	defines
the	infix	eq	and	neq	used	in	TestingExample.kt:

expression	eq	expected

expression	neq	expected

eq	and	neq	are	flexible—almost	anything	works	as	a	test	expression.	If	expected
is	a	String,	then	expression	is	converted	to	a	String	and	the	two	Strings	are
compared.	Otherwise,	expression	and	expected	are	compared	directly	(without
converting	them	first).	In	either	case,	the	result	of	expression	appears	on	the
console	so	you	see	something	when	the	program	runs.	Even	when	the	tests
succeed,	you	still	see	the	result	on	the	left	of	eq	or	neq.	If	expression	and
expected	are	not	equivalent,	AtomicTest	shows	an	error	when	the	program	runs.

The	last	test	in	TestingExample.kt	intentionally	fails	so	you	see	an	example	of
failure	output.	If	the	two	values	are	not	equal,	Kotlin	displays	the	corresponding
message	starting	with	[Error].	If	you	uncomment	the	last	line	and	run	the
example	above,	you	will	see,	after	all	the	successful	tests:



[Error]	Epistimology	!=	Ontology

The	actual	value	stored	in	v2	is	not	what	it	is	claimed	to	be	in	the	“expected”
expression.	AtomicTest	displays	the	String	representations	for	both	expected
and	actual	values.

eq	and	neq	are	the	basic	(infix)	functions	defined	for	AtomicTest—it	truly	is	a
minimal	testing	system.	When	you	put	eq	and	neq	expressions	in	your	examples,
you’ll	create	both	a	test	and	some	console	output.	You	verify	the	correctness	of
the	program	by	running	it.

There’s	a	second	tool	in	AtomicTest.	The	trace	object	captures	output	for	later
comparison:

//	Testing/Trace1.kt

import	atomictest.*

fun	main()	{

		trace("line	1")

		trace(47)

		trace("line	2")

		trace	eq	"""

				line	1

				47

				line	2

		"""

}

Adding	results	to	trace	looks	like	a	function	call,	so	you	can	effectively	replace
println()	with	trace().

In	previous	atoms,	we	displayed	output	and	relied	on	human	visual	inspection	to
catch	any	discrepancies.	That’s	unreliable;	even	in	a	book	where	we	scrutinize
the	code	over	and	over,	we’ve	learned	that	visual	inspection	can’t	be	trusted	to
find	errors.	From	now	on	we	rarely	use	commented	output	blocks	because
AtomicTest	will	do	everything	for	us.	However,	sometimes	we	still	include
commented	output	blocks	when	that	produces	a	more	useful	effect.

Seeing	the	benefits	of	using	testing	throughout	the	rest	of	the	book	should	help
you	incorporate	testing	into	your	programming	process.	You’ll	probably	start
feeling	uncomfortable	when	you	see	code	that	doesn’t	have	tests.	You	might
even	decide	that	code	without	tests	is	broken	by	definition.

Testing	as	Part	of	Programming



Testing	is	most	effective	when	it’s	built	into	your	software	development	process.
Writing	tests	ensures	you	get	the	results	you	expect.	Many	people	advocate
writing	tests	before	writing	the	implementation	code—you	first	make	the	test	fail
before	you	write	the	code	to	make	it	pass.	This	technique,	called	Test	Driven
Development	(TDD),	is	a	way	to	ensure	that	you’re	really	testing	what	you	think
you	are.	You’ll	find	a	more	complete	description	of	TDD	on	Wikipedia	(search
for	“Test	Driven	Development”).

There’s	another	benefit	to	writing	testably—it	changes	the	way	you	craft	your
code.	You	could	just	display	the	results	on	the	console.	But	in	the	test	mindset
you	wonder,	“How	will	I	test	this?”	When	you	create	a	function,	you	decide	you
should	return	something	from	the	function,	if	for	no	other	reason	than	to	test	that
result.	Functions	that	do	nothing	but	take	input	and	produce	output	tend	to
generate	better	designs,	as	well.

Here’s	a	simplified	example	using	TDD	to	implement	the	BMI	calculation	from
Number	Types.	First,	we	write	the	tests,	along	with	an	initial	implementation	that
fails	(because	we	haven’t	yet	implemented	the	functionality):

//	Testing/TDDFail.kt

package	testing1

import	atomictest.eq

fun	main()	{

		calculateBMI(160,	68)	eq	"Normal	weight"

//		calculateBMI(100,	68)	eq	"Underweight"

//		calculateBMI(200,	68)	eq	"Overweight"

}

fun	calculateBMI(lbs:	Int,	height:	Int)	=

		"Normal	weight"

Only	the	first	test	passes.	The	other	tests	fail	and	are	commented.	Next,	we	add
code	to	determine	which	weights	are	in	which	categories.	Now	all	the	tests	fail:

//	Testing/TDDStillFails.kt

package	testing2

import	atomictest.eq

fun	main()	{

		//	Everything	fails:

		//	calculateBMI(160,	68)	eq	"Normal	weight"

		//	calculateBMI(100,	68)	eq	"Underweight"

		//	calculateBMI(200,	68)	eq	"Overweight"

}

fun	calculateBMI(

		lbs:	Int,

		height:	Int

):	String	{



		val	bmi	=	lbs	/	(height	*	height)	*	703.07

		return	if	(bmi	<	18.5)	"Underweight"

		else	if	(bmi	<	25)	"Normal	weight"

		else	"Overweight"

}

We’re	using	Ints	instead	of	Doubles,	producing	a	zero	result.	The	tests	guide	us
to	the	fix:

//	Testing/TDDWorks.kt

package	testing3

import	atomictest.eq

fun	main()	{

		calculateBMI(160.0,	68.0)	eq	"Normal	weight"

		calculateBMI(100.0,	68.0)	eq	"Underweight"

		calculateBMI(200.0,	68.0)	eq	"Overweight"

}

fun	calculateBMI(

		lbs:	Double,

		height:	Double

):	String	{

		val	bmi	=	lbs	/	(height	*	height)	*	703.07

		return	if	(bmi	<	18.5)	"Underweight"

		else	if	(bmi	<	25)	"Normal	weight"

		else	"Overweight"

}

You	may	choose	to	add	additional	tests	for	the	boundary	conditions.

In	the	exercises	for	this	book,	we	include	tests	that	your	code	must	pass.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Exceptions

The	word	“exception”	is	used	in	the	same	sense	as	the	phrase	“I	take
exception	to	that.”

An	exceptional	condition	prevents	the	continuation	of	the	current	function	or
scope.	At	the	point	the	problem	occurs,	you	might	not	know	what	to	do	with	it,
but	you	cannot	continue	within	the	current	context.	You	don’t	have	enough
information	to	fix	the	problem.	So	you	must	stop	and	hand	the	problem	to
another	context	that’s	able	to	take	appropriate	action.

This	atom	covers	the	basics	of	exceptions	as	an	error-reporting	mechanism.	In
Section	VI:	Preventing	Failure,	we	look	at	other	ways	to	deal	with	problems.

It’s	important	to	distinguish	an	exceptional	condition	from	a	normal	problem.	A
normal	problem	has	enough	information	in	the	current	context	to	cope	with	the
issue.	With	an	exceptional	condition,	you	cannot	continue	processing.	All	you
can	do	is	leave,	relegating	the	problem	to	an	external	context.	This	is	what
happens	when	you	throw	an	exception.	The	exception	is	the	object	that	is
“thrown”	from	the	site	of	the	error.

Consider	toInt(),	which	converts	a	String	to	an	Int.	What	happens	if	you	call
this	function	for	a	String	that	doesn’t	contain	an	integer	value?

//	Exceptions/ToIntException.kt

package	exceptions

fun	erroneousCode()	{

		//	Uncomment	this	line	to	get	an	exception:

		//	val	i	=	"1$".toInt()								//	[1]

}

fun	main()	{

		erroneousCode()

}

Uncommenting	line	[1]	produces	an	exception.	Here,	the	failing	line	is
commented	so	we	don’t	stop	the	book’s	build,	which	checks	whether	each
example	compiles	and	runs	as	expected.



When	an	exception	is	thrown,	the	path	of	execution—the	one	that	can’t	be
continued—stops,	and	the	exception	object	ejects	from	the	current	context.	Here,
it	exits	the	context	of	erroneousCode()	and	goes	out	to	the	context	of	main().	In
this	case,	Kotlin	only	reports	the	error;	the	programmer	has	presumably	made	a
mistake	and	must	fix	the	code.

When	an	exception	isn’t	caught,	the	program	aborts	and	displays	a	stack	trace
containing	detailed	information.	Uncommenting	line	[1]	in	ToIntException.kt,
produces	the	following	output:

Exception	in	thread	"main"	java.lang.NumberFormatException:	For	input	s\

tring:	"1$"

		at	java.lang.NumberFormatException.forInputString(NumberFormatExcepti\

on.java:65)

		at	java.lang.Integer.parseInt(Integer.java:580)

		at	java.lang.Integer.parseInt(Integer.java:615)

		at	ToIntExceptionKt.erroneousCode(at	ToIntException.kt:6)

		at	ToIntExceptionKt.main(at	ToIntException.kt:10)

The	stack	trace	gives	details	such	as	the	file	and	line	where	the	exception
occurred,	so	you	can	quickly	discover	the	issue.	The	last	two	lines	show	the
problem:	in	line	10	of	main()	we	call	erroneousCode().	Then,	more	precisely,
in	line	6	of	erroneousCode()	we	call	toInt().

To	avoid	commenting	and	uncommenting	code	to	display	exceptions,	we	use	the
capture()	function	from	the	AtomicTest	package:

//	Exceptions/IntroducingCapture.kt

import	atomictest.*

fun	main()	{

		capture	{

				"1$".toInt()

		}	eq	"NumberFormatException:	"	+

				"""For	input	string:	"1$""""

}

Using	capture(),	we	compare	the	generated	exception	to	the	expected	error
message.	capture()	isn’t	very	helpful	for	normal	programming—it’s	designed
specifically	for	this	book,	so	you	can	see	the	exception	and	know	that	the	output
has	been	checked	by	the	book’s	build	system.

Another	strategy	when	you	can’t	successfully	produce	the	expected	result	is	to
return	null,	which	is	a	special	constant	denoting	“no	value.”	You	can	return
null	instead	of	a	value	of	any	type.	Later	in	Nullable	Types	we	discuss	the	way
null	affects	the	type	of	the	resulting	expression.



The	Kotlin	standard	library	contains	String.toIntOrNull()	which	performs	the
conversion	if	the	String	contains	an	integer	number,	or	produces	null	if	the
conversion	is	impossible—null	is	a	simple	way	to	indicate	failure:

//	Exceptions/IntroducingNull.kt

import	atomictest.eq

fun	main()	{

		"1$".toIntOrNull()	eq	null

}

Suppose	we	calculate	average	income	over	a	period	of	months:

//	Exceptions/AverageIncome.kt

package	firstversion

import	atomictest.*

fun	averageIncome(income:	Int,	months:	Int)	=

		income	/	months

fun	main()	{

		averageIncome(3300,	3)	eq	1100

		capture	{

				averageIncome(5000,	0)

		}	eq	"ArithmeticException:	/	by	zero"

}

If	months	is	zero,	the	division	in	averageIncome()	throws	an
ArithmeticException.	Unfortunately,	this	doesn’t	tell	us	anything	about	why
the	error	occurred,	what	the	denominator	means	and	whether	it	can	legally	be
zero	in	the	first	place.	This	is	clearly	a	bug	in	the	code—averageIncome()

should	cope	with	a	months	of	0	in	a	way	that	prevents	a	divide-by-zero	error.

Let’s	modify	averageIncome()	to	produce	more	information	about	the	source	of
the	problem.	If	months	is	zero,	we	can’t	return	a	regular	integer	value	as	a	result.
One	strategy	is	to	return	null:

//	Exceptions/AverageIncomeWithNull.kt

package	withnull

import	atomictest.eq

fun	averageIncome(income:	Int,	months:	Int)	=

		if	(months	==	0)

				null

		else

				income	/	months

fun	main()	{

		averageIncome(3300,	3)	eq	1100

		averageIncome(5000,	0)	eq	null

}



If	a	function	can	return	null,	Kotlin	requires	that	you	check	the	result	before
using	it	(this	is	covered	in	Nullable	Types).	Even	if	you	only	want	to	display
output	to	the	user,	it’s	better	to	say	“No	full	month	periods	have	passed,”	rather
than	“Your	average	income	for	the	period	is:	null.”

Instead	of	executing	averageIncome()	with	the	wrong	arguments,	you	can	throw
an	exception—escape	and	force	some	other	part	of	the	program	to	manage	the
issue.	You	could	just	allow	the	default	ArithmeticException,	but	it’s	often	more
useful	to	throw	a	specific	exception	with	a	detailed	error	message.	When,	after	a
couple	of	years	in	production,	your	application	suddenly	throws	an	exception
because	a	new	feature	calls	averageIncome()	without	properly	checking	the
arguments,	you’ll	be	grateful	for	that	message:

//	Exceptions/AverageIncomeWithException.kt

package	properexception

import	atomictest.*

fun	averageIncome(income:	Int,	months:	Int)	=

		if	(months	==	0)

				throw	IllegalArgumentException(				//	[1]

						"Months	can't	be	zero")

		else

				income	/	months

fun	main()	{

		averageIncome(3300,	3)	eq	1100

		capture	{

				averageIncome(5000,	0)

		}	eq	"IllegalArgumentException:	"	+

				"Months	can't	be	zero"

}

[1]	When	throwing	an	exception,	the	throw	keyword	is	followed	by	the
exception	to	be	thrown,	along	with	any	arguments	it	might	need.	Here	we
use	the	standard	exception	class	IllegalArgumentException.

Your	goal	is	to	generate	the	most	useful	messages	possible	to	simplify	the
support	of	your	application	in	the	future.	Later	you’ll	learn	to	define	your	own
exception	types	and	make	them	specific	to	your	circumstances.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Lists

A	List	is	a	container,	which	is	an	object	that	holds	other	objects.

Containers	are	also	called	collections.	When	we	need	a	basic	container	for	the
examples	in	this	book,	we	normally	use	a	List.

Lists	are	part	of	the	standard	Kotlin	package	so	they	don’t	require	an	import.

The	following	example	creates	a	List	populated	with	Ints	by	calling	the
standard	library	function	listOf()	with	initialization	values:

//	Lists/Lists.kt

import	atomictest.eq

fun	main()	{

		val	ints	=	listOf(99,	3,	5,	7,	11,	13)

		ints	eq	"[99,	3,	5,	7,	11,	13]"			//	[1]

		//	Select	each	element	in	the	List:

		var	result	=	""

		for	(i	in	ints)	{																	//	[2]

				result	+=	"$i	"

		}

		result	eq	"99	3	5	7	11	13"

		//	"Indexing"	into	the	List:

		ints[4]	eq	11																					//	[3]

}

[1]	A	List	uses	square	brackets	when	displaying	itself.
[2]	for	loops	work	well	with	Lists:	for(i	in	ints)	means	i	receives
each	value	in	ints.	You	don’t	declare	val	i	or	give	its	type;	Kotlin	knows
from	the	context	that	i	is	a	for	loop	identifier.
[3]	Square	brackets	index	into	a	List.	A	List	keeps	its	elements	in
initialization	order,	and	you	select	them	individually	by	number.	Like	most
programming	languages,	Kotlin	starts	indexing	at	element	zero,	which	in
this	case	produces	the	value	99.	Thus	an	index	of	4	produces	the	value	11.

Forgetting	that	indexing	starts	at	zero	produces	the	so-called	off-by-one	error.	In
a	language	like	Kotlin	we	often	don’t	select	elements	one	at	a	time,	but	instead
iterate	through	an	entire	container	using	in.	This	eliminates	off-by-one	errors.



If	you	use	an	index	beyond	the	last	element	in	a	List,	Kotlin	throws	an
ArrayIndexOutOfBoundsException:

//	Lists/OutOfBounds.kt

import	atomictest.*

fun	main()	{

		val	ints	=	listOf(1,	2,	3)

		capture	{

				ints[3]

		}	contains

				listOf("ArrayIndexOutOfBoundsException")

}

A	List	can	hold	all	different	types.	Here’s	a	List	of	Doubles	and	a	List	of
Strings:

//	Lists/ListUsefulFunction.kt

import	atomictest.eq

fun	main()	{

		val	doubles	=

				listOf(1.1,	2.2,	3.3,	4.4)

		doubles.sum()	eq	11.0

		val	strings	=	listOf("Twas",	"Brillig",

				"And",	"Slithy",	"Toves")

		strings	eq	listOf("Twas",	"Brillig",

				"And",	"Slithy",	"Toves")

		strings.sorted()	eq	listOf("And",

				"Brillig",	"Slithy",	"Toves",	"Twas")

		strings.reversed()	eq	listOf("Toves",

				"Slithy",	"And",	"Brillig",	"Twas")

		strings.first()	eq	"Twas"

		strings.takeLast(2)	eq

				listOf("Slithy",	"Toves")

}

This	shows	some	of	List’s	operations.	Note	the	name	“sorted”	instead	of	“sort.”
When	you	call	sorted()	it	produces	a	new	List	containing	the	same	elements
as	the	old,	in	sorted	order—but	it	leaves	the	original	List	alone.	Calling	it	“sort”
implies	that	the	original	List	is	changed	directly	(a.k.a.	sorted	in	place).
Throughout	Kotlin,	you	see	this	tendency	of	“leaving	the	original	object	alone
and	producing	a	new	object.”	reversed()	also	produces	a	new	List.

Parameterized	Types
We	consider	it	good	practice	to	use	type	inference—it	tends	to	make	the	code
cleaner	and	easier	to	read.	Sometimes,	however,	Kotlin	complains	that	it	can’t
figure	out	what	type	to	use,	and	in	other	cases	explicitness	makes	the	code	more
understandable.	Here’s	how	we	tell	Kotlin	the	type	contained	by	a	List:



//	Lists/ParameterizedTypes.kt

import	atomictest.eq

fun	main()	{

		//	Type	is	inferred:

		val	numbers	=	listOf(1,	2,	3)

		val	strings	=

				listOf("one",	"two",	"three")

		//	Exactly	the	same,	but	explicitly	typed:

		val	numbers2:	List<Int>	=	listOf(1,	2,	3)

		val	strings2:	List<String>	=

				listOf("one",	"two",	"three")

		numbers	eq	numbers2

		strings	eq	strings2

}

Kotlin	uses	the	initialization	values	to	infer	that	numbers	contains	a	List	of	Ints,
while	strings	contains	a	List	of	Strings.

numbers2	and	strings2	are	explicitly-typed	versions	of	numbers	and	strings,
created	by	adding	the	type	declarations	List<Int>	and	List<String>.	You
haven’t	seen	angle	brackets	before—they	denote	a	type	parameter,	allowing	you
to	say,	“this	container	holds	‘parameter’	objects.”	We	pronounce	List<Int>	as
“List	of	Int.”

Type	parameters	are	useful	for	components	other	than	containers,	but	you	often
see	them	with	container-like	objects.

Return	values	can	also	have	type	parameters:

//	Lists/ParameterizedReturn.kt

package	lists

import	atomictest.eq

//	Return	type	is	inferred:

fun	inferred(p:	Char,	q:	Char)	=

		listOf(p,	q)

//	Explicit	return	type:

fun	explicit(p:	Char,	q:	Char):	List<Char>	=

		listOf(p,	q)

fun	main()	{

		inferred('a',	'b')	eq	"[a,	b]"

		explicit('y',	'z')	eq	"[y,	z]"

}

Kotlin	infers	the	return	type	for	inferred(),	while	explicit()	specifies	the
function	return	type.	You	can’t	just	say	it	returns	a	List;	Kotlin	will	complain,
so	you	must	give	the	type	parameter	as	well.	When	you	specify	the	return	type	of
a	function,	Kotlin	enforces	your	intention.



Read-Only	and	Mutable	Lists
If	you	don’t	explicitly	say	you	want	a	mutable	List,	you	won’t	get	one.
listOf()	produces	a	read-only	List	that	has	no	mutating	functions.

If	you’re	creating	a	List	gradually	(that	is,	you	don’t	have	all	the	elements	at
creation	time),	use	mutableListOf().	This	produces	a	MutableList	that	can	be
modified:

//	Lists/MutableList.kt

import	atomictest.eq

fun	main()	{

		val	list	=	mutableListOf<Int>()

		list.add(1)

		list.addAll(listOf(2,	3))

		list	+=	4

		list	+=	listOf(5,	6)

		list	eq	listOf(1,	2,	3,	4,	5,	6)

}

You	can	add	elements	to	a	MutableList	using	add()	and	addAll(),	or	the
shortcut	+=	which	adds	a	single	element	or	another	collection.	Because	list	has
no	initial	elements,	we	must	tell	Kotlin	what	type	it	is	by	providing	the	<Int>
specification	in	the	call	to	mutableListOf().

A	MutableList	can	be	treated	as	a	List,	in	which	case	it	cannot	be	changed.	You
can’t,	however,	treat	a	read-only	List	as	a	MutableList:

//	Lists/MutListIsList.kt

package	lists

import	atomictest.eq

fun	getList():	List<Int>	{

		return	mutableListOf(1,	2,	3)

}

fun	main()	{

		//	getList()	produces	a	read-only	List:

		val	list	=	getList()

		//	list	+=	3	//	Error

		list	eq	listOf(1,	2,	3)

}

Note	that	list	lacks	mutation	functions	despite	being	originally	created	using
mutableListOf()	inside	getList().	During	the	return,	the	result	type	becomes
a	List<Int>.	The	original	object	is	still	a	MutableList,	but	it	is	viewed	through
the	lens	of	a	List.



A	List	is	read-only—you	can	read	its	contents	but	not	write	to	it.	If	the
underlying	implementation	is	a	MutableList	and	you	retain	a	mutable	reference
to	that	implementation,	you	can	still	modify	it	via	that	mutable	reference,	and
any	read-only	references	will	see	those	changes.	This	is	another	example	of
aliasing,	introduced	in	Constraining	Visibility:

//	Lists/MultipleListRefs.kt

import	atomictest.eq

fun	main()	{

		val	first	=	mutableListOf(1)

		val	second:	List<Int>	=	first

		second	eq	listOf(1)

		first	+=	2

		//	second	sees	the	change:

		second	eq	listOf(1,	2)

}

first	is	an	immutable	reference	(val)	to	the	mutable	object	produced	by
mutableListOf(1).	Then	second	is	aliased	to	first,	so	it	is	a	view	of	that	same
object.	second	is	read-only	because	List<Int>	does	not	include	modification
functions.	Note	that,	without	the	explicit	List<Int>	type	declaration,	Kotlin
would	infer	that	second	was	also	a	reference	to	a	mutable	object.

We’re	able	to	add	an	element	(2)	to	the	object	because	first	is	a	reference	to	a
mutable	List.	Note	that	second	observes	these	changes—it	cannot	change	the
List	although	the	List	changes	via	first.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Variable	Argument	Lists

The	vararg	keyword	produces	a	flexibly-sized	argument	list.

In	Lists	we	introduced	listOf(),	which	takes	any	number	of	parameters	and
produces	a	List:

//	Varargs/ListOf.kt

import	atomictest.eq

fun	main()	{

		listOf(1)	eq	"[1]"

		listOf("a",	"b")	eq	"[a,	b]"

}

Using	the	vararg	keyword,	you	can	define	a	function	that	takes	any	number	of
arguments,	just	like	listOf()	does.	vararg	is	short	for	variable	argument	list:

//	Varargs/VariableArgList.kt

package	varargs

fun	v(s:	String,	vararg	d:	Double)	{}

fun	main()	{

		v("abc",	1.0,	2.0)

		v("def",	1.0,	2.0,	3.0,	4.0)

		v("ghi",	1.0,	2.0,	3.0,	4.0,	5.0,	6.0)

}

A	function	definition	may	specify	only	one	parameter	as	vararg.	Although	it’s
possible	to	specify	any	item	in	the	parameter	list	as	vararg,	it’s	usually	simplest
to	do	it	for	the	last	one.

vararg	allows	you	to	pass	any	number	(including	zero)	of	arguments.	All
arguments	must	be	of	the	specified	type.	vararg	arguments	are	accessed	using
the	parameter	name,	which	becomes	an	Array:

//	Varargs/VarargSum.kt

package	varargs

import	atomictest.eq

fun	sum(vararg	numbers:	Int):	Int	{

		var	total	=	0

		for	(n	in	numbers)	{

				total	+=	n

		}



		return	total

}

fun	main()	{

		sum(13,	27,	44)	eq	84

		sum(1,	3,	5,	7,	9,	11)	eq	36

		sum()	eq	0

}

Although	Arrays	and	Lists	look	similar,	they	are	implemented	differently
—List	is	a	regular	library	class	while	Array	has	special	low-level	support.
Array	comes	from	Kotlin’s	requirement	for	compatibility	with	other	languages,
especially	Java.

In	day-to-day	programming,	use	a	List	when	you	need	a	simple	sequence.	Use
Arrays	only	when	a	third-party	API	requires	an	Array,	or	when	you’re	dealing
with	varargs.

In	most	cases	you	can	just	ignore	the	fact	that	vararg	produces	an	Array	and
treat	it	as	if	it	were	a	List:

//	Varargs/VarargLikeList.kt

package	varargs

import	atomictest.eq

fun	evaluate(vararg	ints:	Int)	=

		"Size:	${ints.size}\n"	+

		"Sum:	${ints.sum()}\n"	+

		"Average:	${ints.average()}"

fun	main()	{

		evaluate(10,	-3,	8,	1,	9)	eq	"""

				Size:	5

				Sum:	25

				Average:	5.0

		"""

}

You	can	pass	an	Array	of	elements	wherever	a	vararg	is	accepted.	To	create	an
Array,	use	arrayOf()	in	the	same	way	you	use	listOf().	Note	that	an	Array	is
always	mutable.	To	convert	an	Array	into	a	sequence	of	arguments	(not	just	a
single	element	of	type	Array),	use	the	spread	operator,	*:

//	Varargs/SpreadOperator.kt

import	varargs.sum

import	atomictest.eq

fun	main()	{

		val	array	=	intArrayOf(4,	5)

		sum(1,	2,	3,	*array,	6)	eq	21		//	[1]

		//	Doesn't	compile:

		//	sum(1,	2,	3,	array,	6)



		val	list	=	listOf(9,	10,	11)

		sum(*list.toIntArray())	eq	30		//	[2]

}

If	you	pass	an	Array	of	primitive	types	(like	Int,	Double	or	Boolean)	as	in	the
example	above,	the	Array	creation	function	must	be	specifically	typed.	If	you
use	arrayOf(4,	5)	instead	of	intArrayOf(4,	5),	line	[1]	will	produce	an	error
complaining	that	inferred	type	is	Array<Int>	but	IntArray	was	expected.

The	spread	operator	only	works	with	arrays.	If	you	have	a	List	that	you	want	to
pass	as	a	sequence	of	arguments,	first	convert	it	to	an	Array	and	then	apply	the
spread	operator,	as	in	[2].	Because	the	result	is	an	Array	of	a	primitive	type,	we
must	again	use	the	specific	conversion	function	toIntArray().

The	spread	operator	is	especially	helpful	when	you	must	pass	vararg	arguments
to	another	function	that	also	expects	varargs:

//	Varargs/TwoFunctionsWithVarargs.kt

package	varargs

import	atomictest.eq

fun	first(vararg	numbers:	Int):	String	{

		var	result	=	""

		for	(i	in	numbers)	{

				result	+=	"[$i]"

		}

		return	result

}

fun	second(vararg	numbers:	Int)	=

		first(*numbers)

fun	main()	{

		second(7,	9,	32)	eq	"[7][9][32]"

}

Command-Line	Arguments
When	invoking	a	program	on	the	command	line,	you	can	pass	it	a	variable
number	of	arguments.	To	capture	command-line	arguments,	you	must	provide	a
particular	parameter	to	main():

//	Varargs/MainArgs.kt

fun	main(args:	Array<String>)	{

		for	(a	in	args)	{

				println(a)

		}

}



The	parameter	is	traditionally	called	args	(although	you	can	call	it	anything),
and	the	type	for	args	can	only	be	Array<String>	(Array	of	String).

If	you	are	using	IntelliJ	IDEA,	you	can	pass	program	arguments	by	editing	the
corresponding	“Run	configuration,”	as	shown	in	the	last	exercise	for	this	atom.

You	can	also	use	the	kotlinc	compiler	to	produce	a	command-line	program.	If
kotlinc	isn’t	on	your	computer,	follow	the	instructions	on	the	Kotlin	main	site.
Once	you’ve	entered	and	saved	the	code	for	MainArgs.kt,	type	the	following	at
a	command	prompt:

kotlinc	MainArgs.kt

You	provide	the	command-line	arguments	following	the	program	invocation,
like	this:

kotlin	MainArgsKt	hamster	42	3.14159

You’ll	see	this	output:

hamster

42

3.14159

If	you	want	to	turn	a	String	parameter	into	a	specific	type,	Kotlin	provides
conversion	functions,	such	as	a	toInt()	for	converting	to	an	Int,	and	toFloat()
for	converting	to	a	Float.	Using	these	assumes	that	the	command-line	arguments
appear	in	a	particular	order.	Here,	the	program	expects	a	String,	followed	by
something	convertible	to	an	Int,	followed	by	something	convertible	to	a	Float:

//	Varargs/MainArgConversion.kt

fun	main(args:	Array<String>)	{

		if	(args.size	<	3)	return

		val	first	=	args[0]

		val	second	=	args[1].toInt()

		val	third	=	args[2].toFloat()

		println("$first		$second		$third")

}

The	first	line	in	main()	quits	the	program	if	there	aren’t	enough	arguments.	If
you	don’t	provide	something	convertible	to	an	Int	and	a	Float	as	the	second
and	third	command-line	arguments,	you	will	see	runtime	errors	(try	it	to	see	the
errors).

https://kotlinlang.org/


Compile	and	run	MainArgConversion.kt	with	the	same	command-line
arguments	we	used	before,	and	you’ll	see:

hamster	42	3.14159

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Sets

A	Set	is	a	collection	that	allows	only	one	element	of	each	value.

The	most	common	Set	activity	is	to	test	for	membership	using	in	or
contains():

//	Sets/Sets.kt

import	atomictest.eq

fun	main()	{

		val	intSet	=	setOf(1,	1,	2,	3,	9,	9,	4)

		//	No	duplicates:

		intSet	eq	setOf(1,	2,	3,	4,	9)

		//	Element	order	is	unimportant:

		setOf(1,	2)	eq	setOf(2,	1)

		//	Set	membership:

		(9	in	intSet)	eq	true

		(99	in	intSet)	eq	false

		intSet.contains(9)	eq	true

		intSet.contains(99)	eq	false

		//	Does	this	set	contain	another	set?

		intSet.containsAll(setOf(1,	9,	2))	eq	true

		//	Set	union:

		intSet.union(setOf(3,	4,	5,	6))	eq

				setOf(1,	2,	3,	4,	5,	6,	9)

		//	Set	intersection:

		intSet	intersect	setOf(0,	1,	2,	7,	8)	eq

				setOf(1,	2)

		//	Set	difference:

		intSet	subtract	setOf(0,	1,	9,	10)	eq

				setOf(2,	3,	4)

		intSet	-	setOf(0,	1,	9,	10)	eq

				setOf(2,	3,	4)

}

This	example	shows:

1.	 Placing	duplicate	items	into	a	Set	automatically	removes	those	duplicates.
2.	 Element	order	is	not	important	for	sets.	Two	sets	are	equal	if	they	contain

the	same	elements.
3.	 Both	in	and	contains()	test	for	membership.



4.	 You	can	perform	the	usual	Venn-diagram	operations	like	checking	for
subset,	union,	intersection	and	difference,	using	either	dot	notation
(set.union(other))	or	infix	notation	(set	intersect	other).	The
functions	union,	intersect	and	subtract	can	be	used	with	infix	notation.

5.	 Set	difference	can	be	expressed	with	either	subtract()	or	the	minus
operator.

To	remove	duplicates	from	a	List,	convert	it	to	a	Set:

//	Sets/RemoveDuplicates.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(3,	3,	2,	1,	2)

		list.toSet()	eq	setOf(1,	2,	3)

		list.distinct()	eq	listOf(3,	2,	1)

		"abbcc".toSet()	eq	setOf('a',	'b',	'c')

}

You	can	also	use	distinct(),	which	returns	a	List.	You	may	call	toSet()	on	a
String	to	convert	it	into	a	set	of	unique	characters.

As	with	List,	Kotlin	provides	two	creation	functions	for	Set.	The	result	of
setOf()	is	read-only.	To	create	a	mutable	Set,	use	mutableSetOf():

//	Sets/MutableSet.kt

import	atomictest.eq

fun	main()	{

		val	mutableSet	=	mutableSetOf<Int>()

		mutableSet	+=	42

		mutableSet	+=	42

		mutableSet	eq	setOf(42)

		mutableSet	-=	42

		mutableSet	eq	setOf<Int>()

}

The	operators	+=	and	-=	add	and	remove	elements	to	Sets,	just	as	with	Lists.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Maps

A	Map	connects	keys	to	values	and	looks	up	a	value	when	given	a	key.

You	create	a	Map	by	providing	key-value	pairs	to	mapOf().	Using	to,	we	separate
each	key	from	its	associated	value:

//	Maps/Maps.kt

import	atomictest.eq

fun	main()	{

		val	constants	=	mapOf(

				"Pi"	to	3.141,

				"e"	to	2.718,

				"phi"	to	1.618

		)

		constants	eq

				"{Pi=3.141,	e=2.718,	phi=1.618}"

		//	Look	up	a	value	from	a	key:

		constants["e"]	eq	2.718														//	[1]

		constants.keys	eq	setOf("Pi",	"e",	"phi")

		constants.values	eq	"[3.141,	2.718,	1.618]"

		var	s	=	""

		//	Iterate	through	key-value	pairs:

		for	(entry	in	constants)	{											//	[2]

				s	+=	"${entry.key}=${entry.value},	"

		}

		s	eq	"Pi=3.141,	e=2.718,	phi=1.618,"

		s	=	""

		//	Unpack	during	iteration:

		for	((key,	value)	in	constants)						//	[3]

				s	+=	"$key=$value,	"

		s	eq	"Pi=3.141,	e=2.718,	phi=1.618,"

}

[1]	The	[]	operator	looks	up	a	value	using	a	key.	You	can	produce	all	the
keys	using	keys	and	all	the	values	using	values.	Calling	keys	produces	a
Set	because	all	keys	in	a	Map	must	be	unique,	otherwise	you’d	have
ambiguity	during	a	lookup.
[2]	Iterating	through	a	Map	produces	key-value	pairs	as	map	entries.
[3]	You	can	unpack	keys	and	values	as	you	iterate.

A	plain	Map	is	read-only.	Here’s	a	MutableMap:



//	Maps/MutableMaps.kt

import	atomictest.eq

fun	main()	{

		val	m	=

				mutableMapOf(5	to	"five",	6	to	"six")

		m[5]	eq	"five"

		m[5]	=	"5ive"

		m[5]	eq	"5ive"

		m	+=	4	to	"four"

		m	eq	mapOf(5	to	"5ive",

				4	to	"four",	6	to	"six")

}

map[key]	=	value	adds	or	changes	the	value	associated	with	key.	You	can	also
explicitly	add	a	pair	by	saying	map	+=	key	to	value.

mapOf()	and	mutableMapOf()	preserve	the	order	in	which	the	elements	are	put
into	the	Map.	This	is	not	guaranteed	for	other	types	of	Map.

A	read-only	Map	doesn’t	allow	mutations:

//	Maps/ReadOnlyMaps.kt

import	atomictest.eq

fun	main()	{

		val	m	=	mapOf(5	to	"five",	6	to	"six")

		m[5]	eq	"five"

		//	m[5]	=	"5ive"	//	Fails

		//	m	+=	(4	to	"four")	//	Fails

		m	+	(4	to	"four")	//	Doesn't	change	m

		m	eq	mapOf(5	to	"five",	6	to	"six")

		val	m2	=	m	+	(4	to	"four")

		m2	eq	mapOf(

				5	to	"five",	6	to	"six",	4	to	"four")

}

The	definition	of	m	creates	a	Map	associating	Ints	with	Strings.	If	we	try	to
replace	a	String,	Kotlin	emits	an	error.

An	expression	with	+	creates	a	new	Map	that	includes	both	the	old	elements	and
the	new	one,	but	doesn’t	affect	the	original	Map.	The	only	way	to	“add”	an
element	to	a	read-only	Map	is	by	creating	a	new	Map.

A	Map	returns	null	if	it	doesn’t	contain	an	entry	for	a	given	key.	If	you	need	a
result	that	can’t	be	null,	use	getValue()	and	catch	NoSuchElementException	if
the	key	is	missing:

//	Maps/GetValue.kt

import	atomictest.*

fun	main()	{



		val	map	=	mapOf('a'	to	"attempt")

		map['b']	eq	null

		capture	{

				map.getValue('b')

		}	eq	"NoSuchElementException:	"	+

				"Key	b	is	missing	in	the	map."

		map.getOrDefault('a',	"??")	eq	"attempt"

		map.getOrDefault('b',	"??")	eq	"??"

}

getOrDefault()	is	usually	a	nicer	alternative	to	null	or	an	exception.

You	can	store	class	instances	as	values	in	a	Map.	Here’s	a	map	that	retrieves	a
Contact	using	a	number	String:

//	Maps/ContactMap.kt

package	maps

import	atomictest.eq

class	Contact(

		val	name:	String,

		val	phone:	String

)	{

		override	fun	toString():	String	{

				return	"Contact('$name',	'$phone')"

		}

}

fun	main()	{

		val	miffy	=	Contact("Miffy",	"1-234-567890")

		val	cleo	=	Contact("Cleo",	"098-765-4321")

		val	contacts	=	mapOf(

				miffy.phone	to	miffy,

				cleo.phone	to	cleo)

		contacts["1-234-567890"]	eq	miffy

		contacts["1-111-111111"]	eq	null

}

It’s	possible	to	use	class	instances	as	keys	in	a	Map,	but	that’s	trickier	so	we
discuss	it	later	in	the	book.

-

Maps	look	like	simple	little	databases.	They	are	sometimes	called	associative
arrays,	because	they	associate	keys	with	values.	Although	they	are	quite	limited
compared	to	a	full-featured	database,	they	are	nonetheless	remarkably	useful
(and	far	more	efficient	than	a	database).

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Property	Accessors

To	read	a	property,	use	its	name.	To	assign	a	value	to	a	mutable	property,
use	the	assignment	operator	=.

This	reads	and	writes	the	property	i:

//	PropertyAccessors/Data.kt

package	propertyaccessors

import	atomictest.eq

class	Data(var	i:	Int)

fun	main()	{

		val	data	=	Data(10)

		data.i	eq	10	//	Read	the	'i'	property

		data.i	=	20		//	Write	to	the	'i'	property

}

This	appears	to	be	straightforward	access	to	the	piece	of	storage	named	i.
However,	Kotlin	calls	functions	to	perform	the	read	and	write	operations.	As	you
expect,	the	default	behavior	of	those	functions	reads	and	writes	the	data	stored	in
i.	In	this	atom	you’ll	learn	to	write	your	own	property	accessors	to	customize
the	reading	and	writing	actions.

The	accessor	used	to	get	the	value	of	a	property	is	called	a	getter.	You	create	a
getter	by	defining	get()	immediately	after	the	property	definition.	The	accessor
used	to	modify	a	mutable	property	is	called	a	setter.	You	create	a	setter	by
defining	set()	immediately	after	the	property	definition.

The	property	accessors	defined	in	the	following	example	imitate	the	default
implementations	generated	by	Kotlin.	We	display	additional	information	so	you
can	see	that	the	property	accessors	are	indeed	called	during	reads	and	writes.	We
indent	get()	and	set()	to	visually	associate	them	with	the	property,	but	the
actual	association	happens	because	get()	and	set()	are	defined	immediately
after	that	property	(Kotlin	doesn’t	care	about	the	indentation):

//	PropertyAccessors/Default.kt

package	propertyaccessors

import	atomictest.*

class	Default	{



		var	i:	Int	=	0

				get()	{

						trace("get()")

						return	field							//	[1]

				}

				set(value)	{

						trace("set($value)")

						field	=	value						//	[2]

				}

}

fun	main()	{

		val	d	=	Default()

		d.i	=	2

		trace(d.i)

		trace	eq	"""

				set(2)

				get()

				2

		"""

}

The	definition	order	for	get()	and	set()	is	unimportant.	You	can	define	get()
without	defining	set(),	and	vice-versa.

The	default	behavior	for	a	property	returns	its	stored	value	from	a	getter	and
modifies	it	with	a	setter—the	actions	of	[1]	and	[2].	Inside	the	getter	and	setter,
the	stored	value	is	manipulated	indirectly	using	the	field	keyword,	which	is
only	accessible	within	these	two	functions.

This	next	example	uses	the	default	implementation	of	the	getter	and	adds	a	setter
to	trace	changes	to	the	property	n:

//	PropertyAccessors/LogChanges.kt

package	propertyaccessors

import	atomictest.*

class	LogChanges	{

		var	n:	Int	=	0

				set(value)	{

						trace("$field	becomes	$value")

						field	=	value

				}

}

fun	main()	{

		val	lc	=	LogChanges()

		lc.n	eq	0

		lc.n	=	2

		lc.n	eq	2

		trace	eq	"0	becomes	2"

}

If	you	define	a	property	as	private,	both	accessors	become	private.	You	can
also	make	the	setter	private	and	the	getter	public.	Then	you	can	read	the



property	outside	the	class,	but	only	change	its	value	inside	the	class:

//	PropertyAccessors/Counter.kt

package	propertyaccessors

import	atomictest.eq

class	Counter	{

		var	value:	Int	=	0

				private	set

		fun	inc()	=	value++

}

fun	main()	{

		val	counter	=	Counter()

		repeat(10)	{

				counter.inc()

		}

		counter.value	eq	10

}

Using	private	set,	we	control	the	value	property	so	it	can	only	be	incremented
by	one.

Normal	properties	store	their	data	in	a	field.	You	can	also	create	a	property	that
doesn’t	have	a	field:

//	PropertyAccessors/Hamsters.kt

package	propertyaccessors

import	atomictest.eq

class	Hamster(val	name:	String)

class	Cage(private	val	maxCapacity:	Int)	{

		private	val	hamsters	=

				mutableListOf<Hamster>()

		val	capacity:	Int

				get()	=	maxCapacity	-	hamsters.size

		val	full:	Boolean

				get()	=	hamsters.size	==	maxCapacity

		fun	put(hamster:	Hamster):	Boolean	=

				if	(full)

						false

				else	{

						hamsters	+=	hamster

						true

				}

		fun	take():	Hamster	=

				hamsters.removeAt(0)

}

fun	main()	{

		val	cage	=	Cage(2)

		cage.full	eq	false

		cage.capacity	eq	2

		cage.put(Hamster("Alice"))	eq	true

		cage.put(Hamster("Bob"))	eq	true

		cage.full	eq	true

		cage.capacity	eq	0

		cage.put(Hamster("Charlie"))	eq	false



		cage.take()

		cage.capacity	eq	1

}

The	properties	capacity	and	full	contain	no	underlying	state—they	are
computed	at	the	time	of	each	access.	Both	capacity	and	full	are	similar	to
functions,	and	you	can	define	them	as	such:

//	PropertyAccessors/Hamsters2.kt

package	propertyaccessors

class	Cage2(private	val	maxCapacity:	Int)	{

		private	val	hamsters	=

				mutableListOf<Hamster>()

		fun	capacity():	Int	=

				maxCapacity	-	hamsters.size

		fun	isFull():	Boolean	=

				hamsters.size	==	maxCapacity

}

In	this	case,	using	properties	improves	readability	because	capacity	and	fullness
are	properties	of	the	cage.	However,	don’t	just	convert	all	your	functions	to
properties—first,	see	how	they	read.

-

The	Kotlin	style	guide	prefers	properties	over	functions	when	the	value	is	cheap
to	calculate	and	the	property	returns	the	same	result	for	each	invocation	as	long
as	the	object	state	hasn’t	changed.

Property	accessors	provide	a	kind	of	protection	for	properties.	Many	object-
oriented	languages	rely	on	making	a	physical	field	private	to	control	access	to
that	property.	With	property	accessors	you	can	add	code	to	control	or	modify	that
access,	while	allowing	anyone	to	use	a	property.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Summary	2

This	atom	summarizes	and	reviews	the	atoms	in	Section	II,	from	Objects
Everywhere	through	Property	Accessors.

If	you’re	an	experienced	programmer,	this	is	your	next	atom	after	Summary	1,
and	you	will	go	through	the	atoms	sequentially	after	this.

New	programmers	should	read	this	atom	and	perform	the	exercises	as	review.	If
any	information	here	isn’t	clear	to	you,	go	back	and	study	the	atom	for	that	topic.

The	topics	appear	in	appropriate	order	for	experienced	programmers,	which	is
not	the	same	as	the	order	of	the	atoms	in	the	book.	For	example,	we	start	by
introducing	packages	and	imports	so	we	can	use	our	minimal	test	framework	for
the	rest	of	the	atom.

Packages	&	Testing
Any	number	of	reusable	library	components	can	be	bundled	under	a	single
library	name	using	the	package	keyword:

//	Summary2/ALibrary.kt

package	com.yoururl.libraryname

//	Components	to	reuse	...

fun	f()	=	"result"

You	can	put	multiple	components	in	a	single	file,	or	spread	components	out
among	multiple	files	under	the	same	package	name.	Here	we’ve	defined	f()	as
the	sole	component.

To	make	it	unique,	the	package	name	conventionally	begins	with	your	reversed
domain	name.	In	this	example,	the	domain	name	is	yoururl.com.

In	Kotlin,	the	package	name	can	be	independent	from	the	directory	where	its
contents	are	located.	Java	requires	that	the	directory	structure	correspond	to	the
fully-qualified	package	name,	so	the	package	com.yoururl.libraryname	should
be	located	under	the	com/yoururl/libraryname	directory.	For	mixed	Kotlin	and



Java	projects,	Kotlin’s	style	guide	recommends	the	same	practice.	For	pure
Kotlin	projects,	put	the	directory	libraryname	at	the	top	level	of	your	project’s
directory	structure.

An	import	statement	brings	one	or	more	names	into	the	current	namespace:

//	Summary2/UseALibrary.kt

import	com.yoururl.libraryname.*

fun	main()	{

		val	x	=	f()

}

The	star	after	libraryname	tells	Kotlin	to	import	all	the	components	of	a	library.
You	can	also	select	components	individually;	details	are	in	Packages.

In	the	remainder	of	this	book	we	use	package	statements	for	any	file	that	defines
functions,	classes,	etc.,	outside	of	main().	This	prevents	name	clashes	with	other
files	in	the	book.	We	usually	won’t	put	a	package	statement	in	a	file	that	only
contains	a	main().

An	important	library	for	this	book	is	atomictest,	our	simple	testing	framework.
atomictest	is	defined	in	Appendix	A:	AtomicTest,	although	it	uses	language
features	you	will	not	understand	at	this	point	in	the	book.

After	importing	atomictest,	you	use	eq	(equals)	and	neq	(not	equals)	almost	as
if	they	were	language	keywords:

//	Summary2/UsingAtomicTest.kt

import	atomictest.*

fun	main()	{

		val	pi	=	3.14

		val	pie	=	"A	round	dessert"

		pi	eq	3.14

		pie	eq	"A	round	dessert"

		pi	neq	pie

}

/*	Output:

3.14

A	round	dessert

3.14

*/

The	ability	to	use	eq/neq	without	any	dots	or	parentheses	is	called	infix	notation.
You	can	call	infix	functions	either	in	the	regular	way:	pi.eq(3.14),	or	using
infix	notation:	pi	eq	3.14.	Both	eq	and	neq	are	assertions	of	truth	that	also
display	the	result	from	the	left	side	of	the	eq/neq	statement,	and	an	error	message



if	the	expression	on	the	right	of	the	eq	isn’t	equivalent	to	the	left	(or	is
equivalent,	in	the	case	of	neq).	This	way	you	see	verified	results	in	the	source
code.

atomictest.trace	uses	function-call	syntax	for	adding	results,	which	can	then
be	validated	using	eq:

//	Testing/UsingTrace.kt

import	atomictest.*

fun	main()	{

		trace("Hello,")

		trace(47)

		trace("World!")

		trace	eq	"""

				Hello,

				47

				World!

		"""

}

You	can	effectively	replace	println()	with	trace().

Objects	Everywhere
Kotlin	is	a	hybrid	object-functional	language:	it	supports	both	object-oriented
and	functional	programming	paradigms.

Objects	contain	vals	and	vars	to	store	data	(these	are	called	properties)	and
perform	operations	using	functions	defined	within	a	class,	called	member
functions	(when	it’s	unambiguous,	we	just	say	“functions”).	A	class	defines
properties	and	member	functions	for	what	is	essentially	a	new,	user-defined	data
type.	When	you	create	a	val	or	var	of	a	class,	it’s	called	creating	an	object	or
creating	an	instance.

An	especially	useful	type	of	object	is	the	container,	also	called	collection.	A
container	is	an	object	that	holds	other	objects.	In	this	book,	we	often	use	the
List	because	it’s	the	most	general-purpose	sequence.	Here	we	perform	several
operations	on	a	List	that	holds	Doubles.	listOf()	creates	a	new	List	from	its
arguments:

//	Summary2/ListCollection.kt

import	atomictest.eq

fun	main()	{

		val	lst	=	listOf(19.2,	88.3,	22.1)

		lst[1]	eq	88.3		//	Indexing

		lst.reversed()	eq	listOf(22.1,	88.3,	19.2)



		lst.sorted()	eq	listOf(19.2,	22.1,	88.3)

		lst.sum()	eq	129.6

}

No	import	statement	is	required	to	use	a	List.

Kotlin	uses	square	brackets	for	indexing	into	sequences.	Indexing	is	zero-based.

This	example	also	shows	a	few	of	the	many	standard	library	functions	available
for	Lists:	sorted(),	reversed(),	and	sum().	To	understand	these	functions,
consult	the	online	Kotlin	documentation.

When	you	call	sorted()	or	reversed(),	lst	is	not	modified.	Instead,	a	new
List	is	created	and	returned,	containing	the	desired	result.	This	approach	of
never	modifying	the	original	object	is	consistent	throughout	Kotlin	libraries	and
you	should	endeavor	to	follow	this	pattern	when	writing	your	own	code.

Creating	Classes
A	class	definition	consists	of	the	class	keyword,	a	name	for	the	class,	and	an
optional	body.	The	body	contains	property	definitions	(vals	and	vars)	and
function	definitions.

This	example	defines	a	NoBody	class	without	a	body,	and	classes	with	val
properties:

//	Summary2/ClassBodies.kt

package	summary2

class	NoBody

class	SomeBody	{

		val	name	=	"Janet	Doe"

}

class	EveryBody	{

		val	all	=	listOf(SomeBody(),

				SomeBody(),	SomeBody())

}

fun	main()	{

		val	nb	=	NoBody()

		val	sb	=	SomeBody()

		val	eb	=	EveryBody()

}

To	create	an	instance	of	a	class,	put	parentheses	after	its	name,	along	with
arguments	if	those	are	required.

https://kotlinlang.org/docs/reference/


Properties	within	class	bodies	can	be	any	type.	SomeBody	contains	a	property	of
type	String,	and	EveryBody’s	property	is	a	List	holding	SomeBody	objects.

Here’s	a	class	with	member	functions:

//	Summary2/Temperature.kt

package	summary2

import	atomictest.eq

class	Temperature	{

		var	current	=	0.0

		var	scale	=	"f"

		fun	setFahrenheit(now:	Double)	{

				current	=	now

				scale	=	"f"

		}

		fun	setCelsius(now:	Double)	{

				current	=	now

				scale	=	"c"

		}

		fun	getFahrenheit():	Double	=

				if	(scale	==	"f")

						current

				else

						current	*	9.0	/	5.0	+	32.0

		fun	getCelsius():	Double	=

				if	(scale	==	"c")

						current

				else

						(current	-	32.0)	*	5.0	/	9.0

}

fun	main()	{

		val	temp	=	Temperature()			//	[1]

		temp.setFahrenheit(98.6)

		temp.getFahrenheit()	eq	98.6

		temp.getCelsius()	eq	37.0

		temp.setCelsius(100.0)

		temp.getFahrenheit()	eq	212.0

}

These	member	functions	are	just	like	the	top-level	functions	we’ve	defined
outside	of	classes,	except	they	belong	to	the	class	and	have	unqualified	access	to
the	other	members	of	the	class,	such	as	current	and	scale.	Member	functions
can	also	call	other	member	functions	in	the	same	class	without	qualification.

[1]	Although	temp	is	a	val,	we	later	modify	the	Temperature	object.	The
val	definition	prevents	the	reference	temp	from	being	reassigned	to	a	new
object,	but	it	does	not	restrict	the	behavior	of	the	object	itself.

The	following	two	classes	are	the	foundation	of	a	tic-tac-toe	game:

//	Summary2/TicTacToe.kt

package	summary2



import	atomictest.eq

class	Cell	{

		var	entry	=	'	'																			//	[1]

		fun	setValue(e:	Char):	String	=			//	[2]

				if	(entry	==	'	'	&&

						(e	==	'X'	||	e	==	'O'))	{

						entry	=	e

						"Successful	move"

				}	else

						"Invalid	move"

}

class	Grid	{

		val	cells	=	listOf(

				listOf(Cell(),	Cell(),	Cell()),

				listOf(Cell(),	Cell(),	Cell()),

				listOf(Cell(),	Cell(),	Cell())

		)

		fun	play(e:	Char,	x:	Int,	y:	Int):	String	=

				if	(x	!in	0..2	||	y	!in	0..2)

						"Invalid	move"

				else

						cells[x][y].setValue(e)							//	[3]

}

fun	main()	{

		val	grid	=	Grid()

		grid.play('X',	1,	1)	eq	"Successful	move"

		grid.play('X',	1,	1)	eq	"Invalid	move"

		grid.play('O',	1,	3)	eq	"Invalid	move"

}

The	Grid	class	holds	a	List	containing	three	Lists,	each	containing	three	Cells
—a	matrix.

[1]	The	entry	property	in	Cell	is	a	var	so	it	can	be	modified.	The	single
quotes	in	the	initialization	produce	a	Char	type,	so	all	assignments	to	entry
must	also	be	Chars.
[2]	setValue()	tests	that	the	Cell	is	available	and	that	you’ve	passed	the
correct	character.	It	returns	a	String	result	to	indicate	success	or	failure.
[3]	play()	checks	to	see	if	the	x	and	y	arguments	are	within	range,	then
indexes	into	the	matrix,	relying	on	the	tests	performed	by	setValue().

Constructors
Constructors	create	new	objects.	You	pass	information	to	a	constructor	using	its
parameter	list,	placed	in	parentheses	directly	after	the	class	name.	A	constructor
call	thus	looks	like	a	function	call,	except	that	the	initial	letter	of	the	name	is
capitalized	(following	the	Kotlin	style	guide).	The	constructor	returns	an	object
of	the	class:



//	Summary2/WildAnimals.kt

package	summary2

import	atomictest.eq

class	Badger(id:	String,	years:	Int)	{

		val	name	=	id

		val	age	=	years

		override	fun	toString():	String	{

				return	"Badger:	$name,	age:	$age"

		}

}

class	Snake(

		var	type:	String,

		var	length:	Double

)	{

		override	fun	toString():	String	{

				return	"Snake:	$type,	length:	$length"

		}

}

class	Moose(

		val	age:	Int,

		val	height:	Double

)	{

		override	fun	toString():	String	{

				return	"Moose,	age:	$age,	height:	$height"

		}

}

fun	main()	{

		Badger("Bob",	11)	eq	"Badger:	Bob,	age:	11"

		Snake("Garden",	2.4)	eq

				"Snake:	Garden,	length:	2.4"

		Moose(16,	7.2)	eq

				"Moose,	age:	16,	height:	7.2"

}

The	parameters	id	and	years	in	Badger	are	only	available	in	the	constructor
body.	The	constructor	body	consists	of	the	lines	of	code	other	than	function
definitions;	in	this	case,	the	definitions	for	name	and	age.

Often	you	want	the	constructor	parameters	to	be	available	in	parts	of	the	class
other	than	the	constructor	body,	but	without	the	trouble	of	explicitly	defining
new	identifiers	as	we	did	with	name	and	age.	If	you	define	your	parameters	as
vars	or	vals,	they	becomes	properties	and	are	accessible	everywhere	in	the
class.	Both	Snake	and	Moose	use	this	approach,	and	you	can	see	that	the
constructor	parameters	are	now	available	inside	their	respective	toString()
functions.

Constructor	parameters	declared	with	val	cannot	be	changed,	but	those	declared
with	var	can.



Whenever	you	use	an	object	in	a	situation	that	expects	a	String,	Kotlin	produces
a	String	representation	of	that	object	by	calling	its	toString()	member
function.	To	define	a	toString(),	you	must	understand	a	new	keyword:
override.	This	is	necessary	(Kotlin	insists	on	it)	because	toString()	is	already
defined.	override	tells	Kotlin	that	we	do	actually	want	to	replace	the	default
toString()	with	our	own	definition.	The	explicitness	of	override	makes	this
clear	to	the	reader	and	helps	prevent	mistakes.

Notice	the	formatting	of	the	multiline	parameter	list	for	Snake	and	Moose—this	is
the	recommended	standard	when	you	have	too	many	parameters	to	fit	on	one
line,	for	both	constructors	and	functions.

Constraining	Visibility
Kotlin	provides	access	modifiers	similar	to	those	available	in	other	languages
like	C++	or	Java.	These	allow	component	creators	to	decide	what	is	available	to
the	client	programmer.	Kotlin’s	access	modifiers	include	the	public,	private,
protected,	and	internal	keywords.	protected	is	explained	later.

An	access	modifier	like	public	or	private	appears	before	the	definition	for	a
class,	function	or	property.	Each	access	modifier	only	controls	the	access	for	that
particular	definition.

A	public	definition	is	available	to	everyone,	in	particular	to	the	client
programmer	who	uses	that	component.	Thus,	any	changes	to	a	public	definition
will	impact	client	code.

If	you	don’t	provide	a	modifier,	your	definition	is	automatically	public.	For
clarity	in	certain	cases,	programmers	still	sometimes	redundantly	specify
public.

If	you	define	a	class,	top-level	function,	or	property	as	private,	it	is	available
only	within	that	file:

//	Summary2/Boxes.kt

package	summary2

import	atomictest.*

private	var	count	=	0																			//	[1]

private	class	Box(val	dimension:	Int)	{	//	[2]

		fun	volume()	=

				dimension	*	dimension	*	dimension

		override	fun	toString()	=



				"Box	volume:	${volume()}"

}

private	fun	countBox(box:	Box)	{								//	[3]

		trace("$box")

		count++

}

fun	countBoxes()	{

		countBox(Box(4))

		countBox(Box(5))

}

fun	main()	{

		countBoxes()

		trace("$count	boxes")

		trace	eq	"""

				Box	volume:	64

				Box	volume:	125

				2	boxes

		"""

}

You	can	access	private	properties	([1]),	classes	([2]),	and	functions	([3])	only
from	other	functions	and	classes	in	the	Boxes.kt	file.	Kotlin	prevents	you	from
accessing	private	top-level	elements	from	another	file.

Class	members	can	be	private:

//	Summary2/JetPack.kt

package	summary2

import	atomictest.eq

class	JetPack(

		private	var	fuel:	Double			//	[1]

)	{

		private	var	warning	=	false

		private	fun	burn()	=							//	[2]

				if	(fuel	-	1	<=	0)	{

						fuel	=	0.0

						warning	=	true

				}	else

						fuel	-=	1

		public	fun	fly()	=	burn()		//	[3]

		fun	check()	=														//	[4]

				if	(warning)													//	[5]

						"Warning"

				else

						"OK"

}

fun	main()	{

		val	jetPack	=	JetPack(3.0)

		while	(jetPack.check()	!=	"Warning")	{

				jetPack.check()	eq	"OK"

				jetPack.fly()

		}

		jetPack.check()	eq	"Warning"

}



[1]	fuel	and	warning	are	both	private	properties	and	can’t	be	used	by
non-members	of	JetPack.
[2]	burn()	is	private,	and	thus	only	accessible	inside	JetPack.
[3]	fly()	and	check()	are	public	and	can	be	used	everywhere.
[4]	No	access	modifier	means	public	visibility.
[5]	Only	members	of	the	same	class	can	access	private	members.

Because	a	private	definition	is	not	available	to	everyone,	you	can	generally
change	it	without	concern	for	the	client	programmer.	As	a	library	designer,
you’ll	typically	keep	everything	as	private	as	possible,	and	expose	only
functions	and	classes	you	want	client	programmers	to	use.	To	limit	the	size	and
complexity	of	example	listings	in	this	book,	we	only	use	private	in	special
cases.

Any	function	you’re	certain	is	only	a	helper	function	can	be	made	private,	to
ensure	you	don’t	accidentally	use	it	elsewhere	and	thus	prohibit	yourself	from
changing	or	removing	the	function.

It	can	be	useful	to	divide	large	programs	into	modules.	A	module	is	a	logically
independent	part	of	a	codebase.	An	internal	definition	is	accessible	only	inside
the	module	where	it	is	defined.	The	way	you	divide	a	project	into	modules
depends	on	the	build	system	(such	as	Gradle	or	Maven)	and	is	beyond	the	scope
of	this	book.

Modules	are	a	higher-level	concept,	while	packages	enable	finer-grained
structuring.

Exceptions
Consider	toDouble(),	which	converts	a	String	to	a	Double.	What	happens	if
you	call	it	for	a	String	that	doesn’t	translate	into	a	Double?

//	Summary2/ToDoubleException.kt

fun	main()	{

		//	val	i	=	"$1.9".toDouble()

}

Uncommenting	the	line	in	main()	produces	an	exception.	Here,	the	failing	line	is
commented	so	we	don’t	stop	the	book’s	build	(which	checks	whether	each
example	compiles	and	runs	as	expected).

https://gradle.org/
https://maven.apache.org/


When	an	exception	is	thrown,	the	current	path	of	execution	stops,	and	the
exception	object	ejects	from	the	current	context.	When	an	exception	isn’t	caught,
the	program	aborts	and	displays	a	stack	trace	containing	detailed	information.

To	avoid	displaying	exceptions	by	commenting	and	uncommenting	code,
atomictest.capture()	stores	the	exception	and	compares	it	to	what	we	expect:

//	Summary2/AtomicTestCapture.kt

import	atomictest.*

fun	main()	{

		capture	{

				"$1.9".toDouble()

		}	eq	"NumberFormatException:	"	+

				"""For	input	string:	"$1.9""""

}

capture()	is	designed	specifically	for	this	book,	so	you	can	see	the	exception
and	know	that	the	output	has	been	checked	by	the	book’s	build	system.

Another	strategy	when	your	function	can’t	successfully	produce	the	expected
result	is	to	return	null.	Later	in	Nullable	Types	we	discuss	how	null	affects	the
type	of	the	resulting	expression.

To	throw	an	exception,	use	the	throw	keyword	followed	by	the	exception	you
want	to	throw,	along	with	any	arguments	it	might	need.	quadraticZeroes()	in
the	following	example	solves	the	quadratic	equation	that	defines	a	parabola:

ax2	+	bx	+	c	=	0

The	solution	is	the	quadratic	formula:

The	Quadratic	Formula

The	example	finds	the	zeroes	of	the	parabola,	where	the	lines	cross	the	x-axis.
We	throw	exceptions	for	two	limitations:

1.	 a	cannot	be	zero.
2.	 For	zeroes	to	exist,	b2	-	4ac	cannot	be	negative.

https://en.wikipedia.org/wiki/Quadratic_formula


If	zeroes	exist,	there	are	two	of	them,	so	we	create	the	Roots	class	to	hold	the
return	values:

//	Summary2/Quadratic.kt

package	summary2

import	kotlin.math.sqrt

import	atomictest.*

class	Roots(

		val	root1:	Double,

		val	root2:	Double

)

fun	quadraticZeroes(

		a:	Double,

		b:	Double,

		c:	Double

):	Roots	{

		if	(a	==	0.0)

				throw	IllegalArgumentException(

						"a	is	zero")

		val	underRadical	=	b	*	b	-	4	*	a	*	c

		if	(underRadical	<	0)

				throw	IllegalArgumentException(

						"Negative	underRadical:	$underRadical")

		val	squareRoot	=	sqrt(underRadical)

		val	root1	=	(-b	-	squareRoot)	/	2	*	a

		val	root2	=	(-b	+	squareRoot)	/	2	*	a

		return	Roots(root1,	root2)

}

fun	main()	{

		capture	{

				quadraticZeroes(0.0,	4.0,	5.0)

		}	eq	"IllegalArgumentException:	"	+

				"a	is	zero"

		capture	{

				quadraticZeroes(3.0,	4.0,	5.0)

		}	eq	"IllegalArgumentException:	"	+

				"Negative	underRadical:	-44.0"

		val	roots	=	quadraticZeroes(3.0,	8.0,	5.0)

		roots.root1	eq	-15.0

		roots.root2	eq	-9.0

}

Here	we	use	the	standard	exception	class	IllegalArgumentException.	Later
you’ll	learn	to	define	your	own	exception	types	and	to	make	them	specific	to
your	circumstances.	Your	goal	is	to	generate	the	most	useful	messages	possible,
to	simplify	the	support	of	your	application	in	the	future.

Lists
Lists	are	Kotlin’s	basic	sequential	container	type.	You	create	a	read-only	list
using	listOf()	and	a	mutable	list	using	mutableListOf():



//	Summary2/ReadonlyVsMutableList.kt

import	atomictest.*

fun	main()	{

		val	ints	=	listOf(5,	13,	9)

		//	ints.add(11)	//	'add()'	not	available

		for	(i	in	ints)	{

				if	(i	>	10)	{

						trace(i)

				}

		}

		val	chars	=	mutableListOf('a',	'b',	'c')

		chars.add('d')	//	'add()'	available

		chars	+=	'e'

		trace(chars)

		trace	eq	"""

				13

				[a,	b,	c,	d,	e]

		"""

}

A	basic	List	is	read-only,	and	does	not	include	modification	functions.	Thus,	the
modification	function	add()	doesn’t	work	with	ints.

for	loops	work	well	with	Lists:	for(i	in	ints)	means	i	gets	each	value	in
ints.

chars	is	created	as	a	MutableList;	it	can	be	modified	using	functions	like	add()
or	remove().	You	can	also	use	+=	and	-=	to	add	or	remove	elements.

A	read-only	List	is	not	the	same	as	an	immutable	List,	which	can’t	be	modified
at	all.	Here,	we	assign	first,	a	mutable	List,	to	second,	a	read-only	List
reference.	The	read-only	characteristic	of	second	doesn’t	prevent	the	List	from
changing	via	first:

//	Summary2/MultipleListReferences.kt

import	atomictest.eq

fun	main()	{

		val	first	=	mutableListOf(1)

		val	second:	List<Int>	=	first

		second	eq	listOf(1)

		first	+=	2

		//	second	sees	the	change:

		second	eq	listOf(1,	2)

}

first	and	second	refer	to	the	same	object	in	memory.	We	mutate	the	List	via
the	first	reference,	and	then	observe	this	change	in	the	second	reference.



Here’s	a	List	of	Strings	created	by	breaking	up	a	triple-quoted	paragraph.	This
shows	the	power	of	some	of	the	standard	library	functions.	Notice	how	those
functions	can	be	chained:

//	Summary2/ListOfStrings.kt

import	atomictest.*

fun	main()	{

		val	wocky	=	"""

				Twas	brillig,	and	the	slithy	toves

						Did	gyre	and	gimble	in	the	wabe:

				All	mimsy	were	the	borogoves,

						And	the	mome	raths	outgrabe.

		""".trim().split(Regex("\\W+"))

		trace(wocky.take(5))

		trace(wocky.slice(6..12))

		trace(wocky.slice(6..18	step	2))

		trace(wocky.sorted().takeLast(5))

		trace(wocky.sorted().distinct().takeLast(5))

		trace	eq	"""

				[Twas,	brillig,	and,	the,	slithy]

				[Did,	gyre,	and,	gimble,	in,	the,	wabe]

				[Did,	and,	in,	wabe,	mimsy,	the,	And]

				[the,	the,	toves,	wabe,	were]

				[slithy,	the,	toves,	wabe,	were]

		"""

}

trim()	produces	a	new	String	with	the	leading	and	trailing	whitespace
characters	(including	newlines)	removed.	split()	divides	the	String	according
to	its	argument.	In	this	case	we	use	a	Regex	object,	which	creates	a	regular
expression—a	pattern	that	matches	the	parts	to	split.	\W	is	a	special	pattern	that
means	“not	a	word	character,”	and	+	means	“one	or	more	of	the	preceeding.”
Thus	split()	will	break	at	one	or	more	non-word	characters,	and	so	divides	the
block	of	text	into	its	component	words.

In	a	String	literal,	\	precedes	a	special	character	and	produces,	for	example,	a
newline	character	(\n),	or	a	tab	(\t).	To	produce	an	actual	\	in	the	resulting
String	you	need	two	backslashes:	"\\".	Thus	all	regular	expressions	require	an
extra	\	to	insert	a	backslash,	unless	you	use	a	triple-quoted	String:	"""\W+""".

take(n)	produces	a	new	List	containing	the	first	n	elements.	slice()	produces
a	new	List	containing	the	elements	selected	by	its	Range	argument,	and	this
Range	can	include	a	step.

Note	the	name	sorted()	instead	of	sort().	When	you	call	sorted()	it	produces
a	sorted	List,	leaving	the	original	List	alone.	sort()	only	works	with	a
MutableList,	and	that	list	is	sorted	in	place—the	original	List	is	modified.



As	the	name	implies,	takeLast(n)	produces	a	new	List	of	the	last	n	elements.
You	can	see	from	the	output	that	“the”	is	duplicated.	This	is	eliminated	by
adding	the	distinct()	function	to	the	call	chain.

Parameterized	Types
Type	parameters	allow	us	to	describe	compound	types,	most	commonly
containers.	In	particular,	type	parameters	specify	what	a	container	holds.	Here,
we	tell	Kotlin	that	numbers	contain	a	List	of	Int,	while	strings	contain	a	List
of	String:

//	Summary2/ExplicitTyping.kt

package	summary2

import	atomictest.eq

fun	main()	{

		val	numbers:	List<Int>	=	listOf(1,	2,	3)

		val	strings:	List<String>	=

				listOf("one",	"two",	"three")

		numbers	eq	"[1,	2,	3]"

		strings	eq	"[one,	two,	three]"

		toCharList("seven")	eq	"[s,	e,	v,	e,	n]"

}

fun	toCharList(s:	String):	List<Char>	=

		s.toList()

For	both	the	numbers	and	strings	definitions,	we	add	colons	and	the	type
declarations	List<Int>	and	List<String>.	The	angle	brackets	denote	a	type
parameter,	allowing	us	to	say,	“the	container	holds	‘parameter’	objects.”	You
typically	pronounce	List<Int>	as	“List	of	Int.”

A	return	value	can	also	have	a	type	parameter,	as	seen	in	toCharList().	You
can’t	just	say	it	returns	a	List—Kotlin	complains,	so	you	must	give	the	type
parameter	as	well.

Variable	Argument	Lists
The	vararg	keyword	is	short	for	variable	argument	list,	and	allows	a	function	to
accept	any	number	of	arguments	(including	zero)	of	the	specified	type.	The
vararg	becomes	an	Array,	which	is	similar	to	a	List:

//	Summary2/VarArgs.kt

package	summary2

import	atomictest.*

fun	varargs(s:	String,	vararg	ints:	Int)	{

		for	(i	in	ints)	{



				trace("$i")

		}

		trace(s)

}

fun	main()	{

		varargs("primes",	5,	7,	11,	13,	17,	19,	23)

		trace	eq	"5	7	11	13	17	19	23	primes"

}

A	function	definition	may	specify	only	one	parameter	as	vararg.	Any	parameter
in	the	list	can	be	the	vararg,	but	the	final	one	is	generally	simplest.

You	can	pass	an	Array	of	elements	wherever	a	vararg	is	accepted.	To	create	an
Array,	use	arrayOf()	in	the	same	way	you	use	listOf().	Note	that	an	Array	is
always	mutable.	To	convert	an	Array	into	a	sequence	of	arguments	(not	just	a
single	element	of	type	Array),	use	the	spread	operator	*:

//	Summary2/ArraySpread.kt

import	summary2.varargs

import	atomictest.trace

fun	main()	{

		val	array	=	intArrayOf(4,	5)						//	[1]

		varargs("x",	1,	2,	3,	*array,	6)		//	[2]

		val	list	=	listOf(9,	10,	11)

		varargs(

				"y",	7,	8,	*list.toIntArray())		//	[3]

		trace	eq	"1	2	3	4	5	6	x	7	8	9	10	11	y"

}

If	you	pass	an	Array	of	primitive	types	as	in	the	example	above,	the	Array
creation	function	must	be	specifically	typed.	If	[1]	uses	arrayOf(4,	5)	instead
of	intArrayOf(4,	5),	[2]	produces	an	error:	inferred	type	is	Array<Int>	but
IntArray	was	expected.

The	spread	operator	only	works	with	arrays.	If	you	have	a	List	to	pass	as	a
sequence	of	arguments,	first	convert	it	to	an	Array	and	then	apply	the	spread
operator,	as	in	[3].	Because	the	result	is	an	Array	of	a	primitive	type,	we	must
use	the	specific	conversion	function	toIntArray().

Sets
Sets	are	collections	that	allow	only	one	element	of	each	value.	A	Set
automatically	prevents	duplicates.

//	Summary2/ColorSet.kt

package	summary2

import	atomictest.eq



val	colors	=

		"Yellow	Green	Green	Blue"

				.split(Regex("""\W+""")).sorted()		//	[1]

fun	main()	{

		colors	eq

				listOf("Blue",	"Green",	"Green",	"Yellow")

		val	colorSet	=	colors.toSet()								//	[2]

		colorSet	eq

				setOf("Yellow",	"Green",	"Blue")

		(colorSet	+	colorSet)	eq	colorSet				//	[3]

		val	mSet	=	colorSet.toMutableSet()			//	[4]

		mSet	-=	"Blue"

		mSet	+=	"Red"																								//	[5]

		mSet	eq

				setOf("Yellow",	"Green",	"Red")

		//	Set	membership:

		("Green"	in	colorSet)	eq	true								//	[6]

		colorSet.contains("Red")	eq	false

}

[1]	The	String	is	split()	using	a	regular	expression	as	described	earlier
for	ListOfStrings.kt.
[2]	When	colors	is	copied	into	the	read-only	Set	colorSet,	one	of	the	two
"Green"	Strings	is	removed,	because	it	is	a	duplicate.
[3]	Here	we	create	and	display	a	new	Set	using	the	+	operator.	Placing
duplicate	items	into	a	Set	automatically	removes	those	duplicates.
[4]	toMutableSet()	produces	a	new	MutableSet	from	a	read-only	Set.
[5]	For	a	MutableSet,	the	operators	+=	and	-=	add	and	remove	elements,	as
they	do	with	MutableLists.
[6]	Test	for	Set	membership	using	in	or	contains()

The	normal	mathematical	set	operations	such	as	union,	intersection,	difference,
etc.,	are	all	available.

Maps
A	Map	connects	keys	to	values	and	looks	up	a	value	when	given	a	key.	You	create
a	Map	by	providing	key-value	pairs	to	mapOf().	Using	to,	we	separate	each	key
from	its	associated	value:

//	Summary2/ASCIIMap.kt

import	atomictest.eq

fun	main()	{

		val	ascii	=	mapOf(

				"A"	to	65,

				"B"	to	66,

				"C"	to	67,

				"I"	to	73,



				"J"	to	74,

				"K"	to	75

		)

		ascii	eq

				"{A=65,	B=66,	C=67,	I=73,	J=74,	K=75}"

		ascii["B"]	eq	66																			//	[1]

		ascii.keys	eq	"[A,	B,	C,	I,	J,	K]"

		ascii.values	eq

				"[65,	66,	67,	73,	74,	75]"

		var	kv	=	""

		for	(entry	in	ascii)	{													//	[2]

				kv	+=	"${entry.key}:${entry.value},"

		}

		kv	eq	"A:65,B:66,C:67,I:73,J:74,K:75,"

		kv	=	""

		for	((key,	value)	in	ascii)								//	[3]

				kv	+=	"$key:$value,"

		kv	eq	"A:65,B:66,C:67,I:73,J:74,K:75,"

		val	mutable	=	ascii.toMutableMap()	//	[4]

		mutable.remove("I")

		mutable	eq

				"{A=65,	B=66,	C=67,	J=74,	K=75}"

		mutable.put("Z",	90)

		mutable	eq

				"{A=65,	B=66,	C=67,	J=74,	K=75,	Z=90}"

		mutable.clear()

		mutable["A"]	=	100

		mutable	eq	"{A=100}"

}

[1]	A	key	("B")	is	used	to	look	up	a	value	with	the	[]	operator.	You	can
produce	all	the	keys	using	keys	and	all	the	values	using	values.	Accessing
keys	produces	a	Set	because	all	keys	in	a	Map	must	already	be	unique
(otherwise	you’d	have	ambiguity	during	a	lookup).
[2]	Iterating	through	a	Map	produces	key-value	pairs	as	map	entries.
[3]	You	can	unpack	key-value	pairs	as	you	iterate.
[4]	You	can	create	a	MutableMap	from	a	read-only	Map	using
toMutableMap().	Now	we	can	perform	operations	that	modify	mutable,
such	as	remove(),	put(),	and	clear().	Square	brackets	can	assign	a	new
key-value	pair	into	mutable.	You	can	also	add	a	pair	by	saying	map	+=	key
to	value.

Property	Accessors
Accessing	the	property	i	appears	straightforward:

//	Summary2/PropertyReadWrite.kt

package	summary2

import	atomictest.eq

class	Holder(var	i:	Int)

fun	main()	{

		val	holder	=	Holder(10)



		holder.i	eq	10	//	Read	the	'i'	property

		holder.i	=	20		//	Write	to	the	'i'	property

}

However,	Kotlin	calls	functions	to	perform	the	read	and	write	operations.	The
default	behavior	of	those	functions	is	to	read	and	write	the	data	stored	in	i.	By
creating	property	accessors,	you	change	the	actions	that	occur	during	reading
and	writing.

The	accessor	used	to	fetch	the	value	of	a	property	is	called	a	getter.	To	create
your	own	getter,	define	get()	immediately	after	the	property	declaration.	The
accessor	used	to	modify	a	mutable	property	is	called	a	setter.	To	create	your	own
setter,	define	set()	immediately	after	the	property	declaration.	The	order	of
definition	of	getters	and	setters	is	unimportant,	and	you	can	define	one	without
the	other.

The	property	accessors	in	the	following	example	imitate	the	default
implementations	while	displaying	additional	information	so	you	can	see	that	the
property	accessors	are	indeed	called	during	reads	and	writes.	We	indent	the
get()	and	set()	functions	to	visually	associate	them	with	the	property,	but	the
actual	association	happens	because	they	are	defined	immediately	after	that
property:

//	Summary2/GetterAndSetter.kt

package	summary2

import	atomictest.*

class	GetterAndSetter	{

		var	i:	Int	=	0

				get()	{

						trace("get()")

						return	field

				}

				set(value)	{

						trace("set($value)")

						field	=	value

				}

}

fun	main()	{

		val	gs	=	GetterAndSetter()

		gs.i	=	2

		trace(gs.i)

		trace	eq	"""

				set(2)

				get()

				2

		"""

}



Inside	the	getter	and	setter,	the	stored	value	is	manipulated	indirectly	using	the
field	keyword,	which	is	only	accessible	within	these	two	functions.	You	can
also	create	a	property	that	doesn’t	have	a	field,	but	simply	calls	the	getter	to
produce	a	result.

If	you	declare	a	private	property,	both	accessors	become	private.	You	can
make	the	setter	private	and	the	getter	public.	This	means	you	can	read	the
property	outside	the	class,	but	only	change	its	value	inside	the	class.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



SECTION	III:	USABILITY

Computer	languages	differ	not	so	much	in	what	they	make	possible,	but	in
what	they	make	easy—Larry	Wall,	inventor	of	the	Perl	language



Extension	Functions

Suppose	you	discover	a	library	that	does	everything	you	need	…	almost.	If
it	only	had	one	or	two	additional	member	functions,	it	would	solve	your
problem	perfectly.

But	it’s	not	your	code—either	you	don’t	have	access	to	the	source	code	or	you
don’t	control	it.	You’d	have	to	repeat	your	modifications	every	time	a	new
version	came	out.

Kotlin’s	extension	functions	effectively	add	member	functions	to	existing
classes.	The	type	you	extend	is	called	the	receiver.	To	define	an	extension
function,	you	precede	the	function	name	with	the	receiver	type:

fun	ReceiverType.extensionFunction()	{	...	}

This	adds	two	extension	functions	to	the	String	class:

//	ExtensionFunctions/Quoting.kt

package	extensionfunctions

import	atomictest.eq

fun	String.singleQuote()	=	"'$this'"

fun	String.doubleQuote()	=	"\"$this\""

fun	main()	{

		"Hi".singleQuote()	eq	"'Hi'"

		"Hi".doubleQuote()	eq	"\"Hi\""

}

You	call	extension	functions	as	if	they	were	members	of	the	class.

To	use	extensions	from	another	package,	you	must	import	them:

//	ExtensionFunctions/Quote.kt

package	other

import	atomictest.eq

import	extensionfunctions.doubleQuote

import	extensionfunctions.singleQuote

fun	main()	{

		"Single".singleQuote()	eq	"'Single'"

		"Double".doubleQuote()	eq	"\"Double\""

}



You	can	access	member	functions	or	other	extensions	using	the	this	keyword.
this	can	also	be	omitted	in	the	same	way	it	can	be	omitted	inside	a	class,	so	you
don’t	need	explicit	qualification:

//	ExtensionFunctions/StrangeQuote.kt

package	extensionfunctions

import	atomictest.eq

//	Apply	two	sets	of	single	quotes:

fun	String.strangeQuote()	=

		this.singleQuote().singleQuote()		//	[1]

fun	String.tooManyQuotes()	=

		doubleQuote().doubleQuote()							//	[2]

fun	main()	{

		"Hi".strangeQuote()	eq	"''Hi''"

		"Hi".tooManyQuotes()	eq	"\"\"Hi\"\""

}

[1]	this	refers	to	the	String	receiver.
[2]	We	omit	the	receiver	object	(this)	of	the	first	doubleQuote()	function
call.

Creating	extensions	to	your	own	classes	can	sometimes	produce	simpler	code:

//	ExtensionFunctions/BookExtensions.kt

package	extensionfunctions

import	atomictest.eq

class	Book(val	title:	String)

fun	Book.categorize(category:	String)	=

		"""title:	"$title",	category:	$category"""

fun	main()	{

		Book("Dracula").categorize("Vampire")	eq

				"""title:	"Dracula",	category:	Vampire"""

}

Inside	categorize(),	we	access	the	title	property	without	explicit
qualification.

-

Note	that	extension	functions	can	only	access	public	elements	of	the	type	being
extended.	Thus,	extensions	can	only	perform	the	same	actions	as	regular
functions.	You	can	rewrite	Book.categorize(String)	as	categorize(Book,
String).	The	only	reason	for	using	an	extension	function	is	the	syntax,	but	this
syntax	sugar	is	powerful.	To	the	calling	code,	extensions	look	the	same	as



member	functions,	and	IDEs	show	extensions	when	listing	the	functions	that	you
can	call	for	an	object.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Named	&	Default	Arguments

You	can	provide	argument	names	during	a	function	call.

Named	arguments	improve	code	readability.	This	is	especially	true	for	long	and
complex	argument	lists—named	arguments	can	be	clear	enough	that	the	reader
can	understand	a	function	call	without	looking	at	the	documentation.

In	this	example,	all	parameters	are	Int.	Named	arguments	clarify	their	meaning:

//	NamedAndDefaultArgs/NamedArguments.kt

package	color1

import	atomictest.eq

fun	color(red:	Int,	green:	Int,	blue:	Int)	=

		"($red,	$green,	$blue)"

fun	main()	{

		color(1,	2,	3)	eq	"(1,	2,	3)"			//	[1]

		color(

				red	=	76,																					//	[2]

				green	=	89,

				blue	=	0

		)	eq	"(76,	89,	0)"

		color(52,	34,	blue	=	0)	eq						//	[3]

				"(52,	34,	0)"

}

[1]	This	doesn’t	tell	you	much.	You’ll	have	to	look	at	the	documentation	to
know	what	the	arguments	mean.
[2]	The	meaning	of	every	argument	is	clear.
[3]	You	aren’t	required	to	name	all	arguments.

Named	arguments	allow	you	to	change	the	order	of	the	colors.	Here,	we	specify
blue	first:

//	NamedAndDefaultArgs/ArgumentOrder.kt

import	color1.color

import	atomictest.eq

fun	main()	{

		color(blue	=	0,	red	=	99,	green	=	52)	eq

				"(99,	52,	0)"

		color(red	=	255,	255,	0)	eq

				"(255,	255,	0)"

}



You	can	mix	named	and	regular	(positional)	arguments.	If	you	change	argument
order,	you	should	use	named	arguments	throughout	the	call—not	only	for
readability,	but	the	compiler	often	needs	to	be	told	where	the	arguments	are.

Named	arguments	are	even	more	useful	when	combined	with	default	arguments,
which	are	default	values	for	arguments,	specified	in	the	function	definition:

//	NamedAndDefaultArgs/Color2.kt

package	color2

import	atomictest.eq

fun	color(

		red:	Int	=	0,

		green:	Int	=	0,

		blue:	Int	=	0,

)	=	"($red,	$green,	$blue)"

fun	main()	{

		color(139)	eq	"(139,	0,	0)"

		color(blue	=	139)	eq	"(0,	0,	139)"

		color(255,	165)	eq	"(255,	165,	0)"

		color(red	=	128,	blue	=	128)	eq

				"(128,	0,	128)"

}

Any	argument	you	don’t	provide	gets	its	default	value,	so	you	only	need	to
provide	arguments	that	differ	from	the	defaults.	If	you	have	a	long	argument	list,
this	simplifies	the	resulting	code,	making	it	easier	to	write	and—more
importantly—to	read.

This	example	also	uses	a	trailing	comma	in	the	definition	for	color().	The
trailing	comma	is	the	extra	comma	after	the	last	parameter	(blue).	This	is	useful
when	your	parameters	or	values	are	written	on	multiple	lines.	With	a	trailing
comma,	you	can	add	new	items	and	change	their	order	without	adding	or
removing	commas.

Named	and	default	arguments	(as	well	as	trailing	commas)	also	work	for
constructors:

//	NamedAndDefaultArgs/Color3.kt

package	color3

import	atomictest.eq

class	Color(

		val	red:	Int	=	0,

		val	green:	Int	=	0,

		val	blue:	Int	=	0,

)	{

		override	fun	toString()	=

				"($red,	$green,	$blue)"

}



fun	main()	{

		Color(red	=	77).toString()	eq	"(77,	0,	0)"

}

joinToString()	is	a	standard	library	function	that	uses	default	arguments.	It
combines	the	contents	of	an	iterable	(a	list,	set	or	range)	into	a	String.	You	can
specify	a	separator,	a	prefix	element	and	a	postfix	element:

//	NamedAndDefaultArgs/CreateString.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,)

		list.toString()	eq	"[1,	2,	3]"

		list.joinToString()	eq	"1,	2,	3"

		list.joinToString(prefix	=	"(",

				postfix	=	")")	eq	"(1,	2,	3)"

		list.joinToString(separator	=	":")	eq

				"1:2:3"

}

The	default	toString()	for	a	List	returns	the	contents	in	square	brackets,	which
might	not	be	what	you	want.	The	default	values	for	joinToString()s	parameters
are	a	comma	for	separator	and	empty	Strings	for	prefix	and	postfix.	In	the
above	example,	we	use	named	and	default	arguments	to	specify	only	the
arguments	we	want	to	change.

The	initializer	for	list	includes	a	trailing	comma.	Normally	you’ll	only	use	a
trailing	comma	when	each	element	is	on	its	own	line.

If	you	use	an	object	as	a	default	argument,	a	new	instance	of	that	object	is
created	for	each	invocation:

//	NamedAndDefaultArgs/Evaluation.kt

package	namedanddefault

class	DefaultArg

fun	h(d:	DefaultArg	=	DefaultArg())	=

		println(d)

fun	main()	{

		h()

		h()

}

/*	Sample	output:

DefaultArg@28d93b30

DefaultArg@1b6d3586

*/



The	addresses	of	the	Default	objects	are	different	for	the	two	calls	to	h(),
showing	that	there	are	two	distinct	objects.

Specify	argument	names	when	they	improve	readability.	Compare	the	following
two	calls	to	joinToString():

//	NamedAndDefaultArgs/CreateString2.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3)

		list.joinToString(".	",	"",	"!")	eq

				"1.	2.	3!"

		list.joinToString(separator	=	".	",

				postfix	=	"!")	eq	"1.	2.	3!"

}

It’s	hard	to	guess	whether	".	"	or	""	is	a	separator	unless	you	memorize	the
parameter	order,	which	is	impractical.

As	another	example	of	default	arguments,	trimMargin()	is	a	standard	library
function	that	formats	multi-line	Strings.	It	uses	a	margin	prefix	String	to
establish	the	beginning	of	each	line.	trimMargin()	trims	leading	whitespace
characters	followed	by	the	margin	prefix	from	every	line	of	the	source	String.	It
removes	the	first	and	last	lines	if	they	are	blank:

//	NamedAndDefaultArgs/TrimMargin.kt

import	atomictest.eq

fun	main()	{

		val	poem	=	"""

				|->Last	night	I	saw	upon	the	stair

								|->A	little	man	who	wasn't	there

										|->He	wasn't	there	again	today

|->Oh,	how	I	wish	he'd	go	away."""

		poem.trimMargin()	eq

"""->Last	night	I	saw	upon	the	stair

->A	little	man	who	wasn't	there

->He	wasn't	there	again	today

->Oh,	how	I	wish	he'd	go	away."""

		poem.trimMargin(marginPrefix	=	"|->")	eq

"""Last	night	I	saw	upon	the	stair

A	little	man	who	wasn't	there

He	wasn't	there	again	today

Oh,	how	I	wish	he'd	go	away."""

}

The	|	(“pipe”)	is	the	default	argument	for	the	margin	prefix,	and	you	can	replace
it	with	a	String	of	your	choosing.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Overloading

Languages	without	support	for	default	arguments	often	use	overloading	to
imitate	that	feature.

The	term	overload	refers	to	the	name	of	a	function:	You	use	the	same	name
(“overload”	that	name)	for	different	functions	as	long	as	the	parameter	lists
differ.	Here,	we	overload	the	member	function	f():

//	Overloading/Overloading.kt

package	overloading

import	atomictest.eq

class	Overloading	{

		fun	f()	=	0

		fun	f(n:	Int)	=	n	+	2

}

fun	main()	{

		val	o	=	Overloading()

		o.f()	eq	0

		o.f(11)	eq	13

}

In	Overloading,	you	see	two	functions	with	the	same	name,	f().	The	function’s
signature	consists	of	the	name,	parameter	list	and	return	type.	Kotlin
distinguishes	one	function	from	another	by	comparing	signatures.	When
overloading	functions,	the	parameter	lists	must	be	unique—you	cannot	overload
on	return	types.

The	calls	show	that	they	are	indeed	different	functions.	A	function	signature	also
includes	information	about	the	enclosing	class	(or	the	receiver	type,	if	it’s	an
extension	function).

Note	that	if	a	class	already	has	a	member	function	with	the	same	signature	as	an
extension	function,	Kotlin	prefers	the	member	function.	However,	you	can
overload	the	member	function	with	an	extension	function:

//	Overloading/MemberVsExtension.kt

package	overloading

import	atomictest.eq

class	My	{



		fun	foo()	=	0

}

fun	My.foo()	=	1													//	[1]

fun	My.foo(i:	Int)	=	i	+	2			//	[2]

fun	main()	{

		My().foo()	eq	0

		My().foo(1)	eq	3

}

[1]	It’s	senseless	to	declare	an	extension	that	duplicates	a	member,	because
it	can	never	be	called.
[2]	You	can	overload	a	member	function	using	an	extension	function	by
providing	a	different	parameter	list.

Don’t	use	overloading	to	imitate	default	arguments.	That	is,	don’t	do	this:

//	Overloading/WithoutDefaultArguments.kt

package	withoutdefaultarguments

import	atomictest.eq

fun	f(n:	Int)	=	n	+	373

fun	f()	=	f(0)

fun	main()	{

		f()	eq	373

}

The	function	without	parameters	just	calls	the	first	function.	The	two	functions
can	be	replaced	with	a	single	function	by	using	a	default	argument:

//	Overloading/WithDefaultArguments.kt

package	withdefaultarguments

import	atomictest.eq

fun	f(n:	Int	=	0)	=	n	+	373

fun	main()	{

		f()	eq	373

}

In	both	examples	you	can	call	the	function	either	without	an	argument	or	by
passing	an	integer	value.	Prefer	the	form	in	WithDefaultArguments.kt.

When	using	overloaded	functions	together	with	default	arguments,	calling	the
overloaded	function	searches	for	the	“closest”	match.	In	the	following	example,
the	foo()	call	in	main()	does	not	call	the	first	version	of	the	function	using	its
default	argument	of	99,	but	instead	calls	the	second	version,	the	one	without
parameters:



//	Overloading/OverloadedVsDefaultArg.kt

package	overloadingvsdefaultargs

import	atomictest.*

fun	foo(n:	Int	=	99)	=	trace("foo-1-$n")

fun	foo()	{

		trace("foo-2")

		foo(14)

}

fun	main()	{

		foo()

		trace	eq	"""

				foo-2

				foo-1-14

		"""

}

You	can	never	utilize	the	default	argument	of	99,	because	foo()	always	calls	the
second	version	of	f().

Why	is	overloading	useful?	It	allows	you	to	express	“variations	on	a	theme”
more	clearly	than	if	you	were	forced	to	use	different	function	names.	Suppose
you	want	addition	functions:

//	Overloading/OverloadingAdd.kt

package	overloading

import	atomictest.eq

fun	addInt(i:	Int,	j:	Int)	=	i	+	j

fun	addDouble(i:	Double,	j:	Double)	=	i	+	j

fun	add(i:	Int,	j:	Int)	=	i	+	j

fun	add(i:	Double,	j:	Double)	=	i	+	j

fun	main()	{

		addInt(5,	6)	eq	add(5,	6)

		addDouble(56.23,	44.77)	eq

				add(56.23,	44.77)

}

addInt()	takes	two	Ints	and	returns	an	Int,	while	addDouble()	takes	two
Doubles	and	returns	a	Double.	Without	overloading,	you	can’t	just	name	the
operation	add(),	so	programmers	typically	conflate	what	with	how	to	produce
unique	names	(you	can	also	create	unique	names	using	random	characters	but
the	typical	pattern	is	to	use	meaningful	information	like	parameter	types).	In
contrast,	the	overloaded	add()	is	much	clearer.

-



The	lack	of	overloading	in	a	language	is	not	a	terrible	hardship,	but	the	feature
provides	valuable	simplification,	producing	more	readable	code.	With
overloading,	you	just	say	what,	which	raises	the	level	of	abstraction	and	puts	less
mental	load	on	the	reader.	If	you	want	to	know	how,	look	at	the	parameters.
Notice	also	that	overloading	reduces	redundancy:	If	we	must	say	addInt()	and
addDouble(),	then	we	essentially	repeat	the	parameter	information	in	the
function	name.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



when	Expressions

A	large	part	of	computer	programming	is	performing	an	action	when	a
pattern	matches.

Anything	that	simplifies	this	task	is	a	boon	for	programmers.	If	you	have	more
than	two	or	three	choices	to	make,	when	expressions	are	much	nicer	than	if
expressions.

A	when	expression	compares	a	value	against	a	selection	of	possibilities.	It	begins
with	the	keyword	when	and	the	parenthesized	value	to	compare.	This	is	followed
by	a	body	containing	a	set	of	possible	matches	and	their	associated	actions.	Each
match	is	an	expression	followed	by	a	right	arrow	->.	The	arrow	is	the	two
separate	characters	-	and	>	with	no	white	space	between	them.	The	expression	is
evaluated	and	compared	to	the	target	value.	If	it	matches,	the	expression	to	the
right	of	the	->	produces	the	result	of	the	when	expression.

ordinal()	in	the	following	example	builds	the	German	word	for	an	ordinal
number	based	on	a	word	for	the	cardinal	number.	It	matches	an	integer	to	a	fixed
set	of	numbers	to	check	whether	it	applies	to	a	general	rule	or	is	an	exception
(which	happens	painfully	often	in	German):

//	WhenExpressions/GermanOrdinals.kt

package	whenexpressions

import	atomictest.eq

val	numbers	=	mapOf(

		1	to	"eins",	2	to	"zwei",	3	to	"drei",

		4	to	"vier",	5	to	"fuenf",	6	to	"sechs",

		7	to	"sieben",	8	to	"acht",	9	to	"neun",

		10	to	"zehn",	11	to	"elf",	12	to	"zwoelf",

		13	to	"dreizehn",	14	to	"vierzehn",

		15	to	"fuenfzehn",	16	to	"sechzehn",

		17	to	"siebzehn",	18	to	"achtzehn",

		19	to	"neunzehn",	20	to	"zwanzig"

)

fun	ordinal(i:	Int):	String	=

		when	(i)	{																												//	[1]

				1	->	"erste"																								//	[2]

				3	->	"dritte"

				7	->	"siebte"

				8	->	"achte"

				20	->	"zwanzigste"



				else	->	numbers.getValue(i)	+	"te"		//	[3]

		}

fun	main()	{

		ordinal(2)	eq	"zweite"

		ordinal(3)	eq	"dritte"

		ordinal(11)	eq	"elfte"

}

[1]	The	when	expression	compares	i	to	the	match	expressions	in	the	body.
[2]	The	first	successful	match	completes	execution	of	the	when	expression
—here,	a	String	is	produced	which	becomes	the	return	value	of
ordinal().
[3]	The	else	keyword	provides	a	“fall	through”	when	there	are	no	matches.
The	else	case	always	appears	last	in	the	match	list.	When	we	test	against	2,
it	doesn’t	match	1,	3,	7,	8	or	20,	and	so	falls	through	to	the	else	case.

If	you	forget	the	else	branch	in	the	example	above,	the	compile-time	error	is:
‘when’	expression	must	be	exhaustive,	add	necessary	‘else’	branch.	If	you	treat	a
when	expression	as	a	statement—that	is,	you	don’t	use	the	result	of	the	when—
you	can	omit	the	else	branch.	Unmatched	values	are	then	just	ignored.

In	the	following	example,	Coordinates	reports	changes	to	its	properties	using
Property	Accessors.	The	when	expression	processes	each	item	from	inputs:

//	WhenExpressions/AnalyzeInput.kt

package	whenexpressions

import	atomictest.*

class	Coordinates	{

		var	x:	Int	=	0

				set(value)	{

						trace("x	gets	$value")

						field	=	value

				}

		var	y:	Int	=	0

				set(value)	{

						trace("y	gets	$value")

						field	=	value

				}

		override	fun	toString()	=	"($x,	$y)"

}

fun	processInputs(inputs:	List<String>)	{

		val	coordinates	=	Coordinates()

		for	(input	in	inputs)	{

				when	(input)	{																			//	[1]

						"up",	"u"	->	coordinates.y--			//	[2]

						"down",	"d"	->	coordinates.y++

						"left",	"l"	->	coordinates.x--

						"right",	"r"	->	{														//	[3]

								trace("Moving	right")

								coordinates.x++

						}



						"nowhere"	->	{}																//	[4]

						"exit"	->	return															//	[5]

						else	->	trace("bad	input:	$input")

				}

		}

}

fun	main()	{

		processInputs(listOf("up",	"d",	"nowhere",

				"left",		"right",	"exit",	"r"))

		trace	eq	"""

				y	gets	-1

				y	gets	0

				x	gets	-1

				Moving	right

				x	gets	0

		"""

}

[1]	input	is	matched	against	the	different	options.
[2]	You	can	list	several	values	in	one	branch	using	commas.	Here,	if	the
user	enters	either	“up”	or	“u”	we	interpret	it	as	a	move	up.
[3]	Multiple	actions	within	a	branch	must	be	in	a	block	body.
[4]	“Doing	nothing”	is	expressed	with	an	empty	block.
[5]	Returning	from	the	outer	function	is	a	valid	action	within	a	branch.	In
this	case,	the	return	terminates	the	call	to	processInputs().

Any	expression	can	be	an	argument	for	when,	and	the	matches	can	be	any	values
(not	just	constants):

//	WhenExpressions/MatchingAgainstVals.kt

import	atomictest.*

fun	main()	{

		val	yes	=	"A"

		val	no	=	"B"

		for	(choice	in	listOf(yes,	no,	yes))	{

				when	(choice)	{

						yes	->	trace("Hooray!")

						no	->	trace("Too	bad!")

				}

				//	The	same	logic	using	'if':

				if	(choice	==	yes)	trace("Hooray!")

				else	if	(choice	==	no)	trace("Too	bad!")

		}

		trace	eq	"""

				Hooray!

				Hooray!

				Too	bad!

				Too	bad!

				Hooray!

				Hooray!

		"""

}



when	expressions	can	overlap	the	functionality	of	if	expressions.	when	is	more
flexible,	so	prefer	it	over	if	when	there’s	a	choice.

We	can	match	a	Set	of	values	against	another	Set	of	values:

//	WhenExpressions/MixColors.kt

package	whenexpressions

import	atomictest.eq

fun	mixColors(first:	String,	second:	String)	=

		when	(setOf(first,	second))	{

				setOf("red",	"blue")	->	"purple"

				setOf("red",	"yellow")	->	"orange"

				setOf("blue",	"yellow")	->	"green"

				else	->	"unknown"

		}

fun	main()	{

		mixColors("red",	"blue")	eq	"purple"

		mixColors("blue",	"red")	eq	"purple"

		mixColors("blue",	"purple")	eq	"unknown"

}

Inside	mixColors()	we	use	a	Set	as	a	when	argument	and	compare	it	with
different	Sets.	We	use	a	Set	because	the	order	of	elements	is	unimportant—we
need	the	same	result	when	we	mix	“red”	and	“blue”	as	when	we	mix	“blue”	and
“red.”

when	has	a	special	form	that	takes	no	argument.	Omitting	the	argument	means
the	branches	can	check	different	Boolean	conditions.	You	can	use	any	Boolean
expression	as	a	branch	condition.	As	an	example,	we	rewrite	bmiMetric()
introduced	in	Number	Types,	first	showing	the	original	solution,	then	using	when
instead	of	if:

//	WhenExpressions/BmiWhen.kt

package	whenexpressions

import	atomictest.eq

fun	bmiMetricOld(

		kg:	Double,

		heightM:	Double

):	String	{

		val	bmi	=	kg	/	(heightM	*	heightM)

		return	if	(bmi	<	18.5)	"Underweight"

				else	if	(bmi	<	25)	"Normal	weight"

				else	"Overweight"

}

fun	bmiMetricWithWhen(

		kg:	Double,

		heightM:	Double

):	String	{

		val	bmi	=	kg	/	(heightM	*	heightM)

		return	when	{



				bmi	<	18.5	->	"Underweight"

				bmi	<	25	->	"Normal	weight"

				else	->	"Overweight"

		}

}

fun	main()	{

		bmiMetricOld(72.57,	1.727)	eq

				bmiMetricWithWhen(72.57,	1.727)

}

The	solution	using	when	is	a	more	elegant	way	to	choose	between	several
options.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Enumerations

An	enumeration	is	a	collection	of	names.

Kotlin’s	enum	class	is	a	convenient	way	to	manage	these	names:

//	Enumerations/Level.kt

package	enumerations

import	atomictest.eq

enum	class	Level	{

		Overflow,	High,	Medium,	Low,	Empty

}

fun	main()	{

		Level.Medium	eq	"Medium"

}

Creating	an	enum	generates	toString()s	for	the	enum	names.

You	must	qualify	each	reference	to	an	enumeration	name,	as	with	Level.Medium
in	main().	You	can	eliminate	this	qualification	using	an	import	to	bring	all
names	from	the	enumeration	into	the	current	namespace	(namespaces	keep
names	from	colliding	with	each	other):

//	Enumerations/EnumImport.kt

import	atomictest.eq

import	enumerations.Level.*			//	[1]

fun	main()	{

		Overflow	eq	"Overflow"

		High	eq	"High"

}

[1]	The	*	imports	all	the	names	inside	the	Level	enumeration,	but	does	not
import	the	name	Level.

You	can	import	enum	values	into	the	same	file	where	the	enum	class	is	defined:

//	Enumerations/RecursiveEnumImport.kt

package	enumerations

import	atomictest.eq

import	enumerations.Size.*												//	[1]

enum	class	Size	{

		Tiny,	Small,	Medium,	Large,	Huge,	Gigantic



}

fun	main()	{

		Gigantic	eq	"Gigantic"														//	[2]

		Size.values().toList()	eq											//	[3]

				listOf(Tiny,	Small,	Medium,

						Large,	Huge,	Gigantic)

		Tiny.ordinal	eq	0																			//	[4]

		Huge.ordinal	eq	4

}

[1]	We	import	the	values	of	Size	before	the	Size	definition	appears	in	the
file.
[2]	After	the	import,	we	no	longer	need	to	qualify	access	to	the
enumeration	names.
[3]	You	can	iterate	through	the	enumeration	names	using	values().
values()	returns	an	Array,	so	we	call	toList()	to	convert	it	to	a	List.
[4]	The	first	declared	constant	of	an	enum	has	an	ordinal	value	of	zero.
Each	subsequent	constant	receives	the	next	integer	value.

You	can	perform	different	actions	for	different	enum	entries	using	a	when
expression.	Here	we	import	the	name	Level,	as	well	as	all	its	entries:

//	Enumerations/CheckingOptions.kt

package	checkingoptions

import	atomictest.*

import	enumerations.Level

import	enumerations.Level.*

fun	checkLevel(level:	Level)	{

		when	(level)	{

				Overflow	->	trace(">>>	Overflow!")

				Empty	->	trace("Alert:	Empty")

				else	->	trace("Level	$level	OK")

		}

}

fun	main()	{

		checkLevel(Empty)

		checkLevel(Low)

		checkLevel(Overflow)

		trace	eq	"""

				Alert:	Empty

				Level	Low	OK

				>>>	Overflow!

		"""

}

checkLevel()	performs	specific	actions	for	only	two	of	the	constants,	while
behaving	ordinarily	(the	else	case)	for	all	other	options.



An	enumeration	is	a	special	kind	of	class	with	a	fixed	number	of	instances,	all
listed	within	the	class	body.	In	other	ways,	an	enum	class	behaves	like	a	regular
class,	so	you	can	define	member	properties	and	functions.	If	you	include
additional	elements,	you	must	add	a	semicolon	after	the	last	enumeration	value:

//	Enumerations/Direction.kt

package	enumerations

import	atomictest.eq

import	enumerations.Direction.*

enum	class	Direction(val	notation:	String)	{

		North("N"),	South("S"),

		East("E"),	West("W");		//	Semicolon	required

		val	opposite:	Direction

				get()	=	when	(this)	{

						North	->	South

						South	->	North

						West	->	East

						East	->	West

				}

}

fun	main()	{

		North.notation	eq	"N"

		North.opposite	eq	South

		West.opposite.opposite	eq	West

		North.opposite.notation	eq	"S"

}

The	Direction	class	contains	a	notation	property	holding	a	different	value	for
each	instance.	You	pass	values	for	the	notation	constructor	parameter	in
parentheses	(North("N")),	just	like	you	construct	an	instance	of	a	regular	class.

The	getter	for	the	opposite	property	dynamically	computes	the	result	when	it	is
accessed.

Notice	that	when	doesn’t	require	an	else	branch	in	this	example,	because	all
possible	enum	entries	are	covered.

-

Enumerations	can	make	your	code	more	readable,	which	is	always	desirable.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Data	Classes

Kotlin	reduces	repetitive	coding.

The	class	mechanism	performs	a	fair	amount	of	work	for	you.	However,
creating	classes	that	primarily	hold	data	still	requires	a	significant	amount	of
repetitive	code.	When	you	need	a	class	that’s	essentially	a	data	holder,	data
classes	simplify	your	code	and	perform	common	tasks.

You	define	a	data	class	using	the	data	keyword,	which	tells	Kotlin	to	generate
additional	functionality.	Each	constructor	parameter	must	be	preceded	by	var	or
val:

//	DataClasses/Simple.kt

package	dataclasses

import	atomictest.eq

data	class	Simple(

		val	arg1:	String,

		var	arg2:	Int

)

fun	main()	{

		val	s1	=	Simple("Hi",	29)

		val	s2	=	Simple("Hi",	29)

		s1	eq	"Simple(arg1=Hi,	arg2=29)"

		s1	eq	s2

}

This	example	reveals	two	features	of	data	classes:

1.	 The	String	produced	by	s1	is	different	than	what	we	usually	see;	it
includes	the	parameter	names	and	values	of	the	data	held	by	the	object.
data	classes	display	objects	in	a	nice,	readable	format	without	requiring
any	additional	code.

2.	 If	you	create	two	instances	of	the	same	data	class	containing	identical	data
(equal	values	for	properties),	you	probably	also	want	those	two	instances	to
be	equal.	To	achieve	that	behavior	for	a	regular	class,	you	must	define	a
special	function	equals()	to	compare	instances.	In	data	classes,	this
function	is	automatically	generated;	it	compares	the	values	of	all	properties
specified	as	constructor	parameters.



Here’s	an	ordinary	class	Person	and	a	data	class	Contact:

//	DataClasses/DataClasses.kt

package	dataclasses

import	atomictest.*

class	Person(val	name:	String)

data	class	Contact(

		val	name:	String,

		val	number:	String

)

fun	main()	{

		//	These	seem	the	same,	but	they're	not:

		Person("Cleo")	neq	Person("Cleo")

		//	A	data	class	defines	equality	sensibly:

		Contact("Miffy",	"1-234-567890")	eq

		Contact("Miffy",	"1-234-567890")

}

/*	Sample	output:

dataclasses.Person@54bedef2

Contact(name=Miffy,	number=1-234-567890)

*/

Because	the	Person	class	is	defined	without	the	data	keyword,	two	instances
containing	the	same	name	are	not	equal.	Fortunately,	creating	Contact	as	a	data
class	produces	a	reasonable	result.

Notice	the	difference	between	the	display	format	of	the	data	class,	and	Person,
which	just	shows	default	object	information.

Another	useful	function	generated	for	every	data	class	is	copy(),	which	creates
a	new	object	containing	the	data	from	the	current	object.	However,	it	also	allows
you	to	change	selected	values	in	the	process:

//	DataClasses/CopyDataClass.kt

package	dataclasses

import	atomictest.eq

data	class	DetailedContact(

		val	name:	String,

		val	surname:	String,

		val	number:	String,

		val	address:	String

)

fun	main()	{

		val	contact	=	DetailedContact(

				"Miffy",

				"Miller",

				"1-234-567890",

				"1600	Amphitheatre	Parkway")

		val	newContact	=	contact.copy(

				number	=	"098-765-4321",

				address	=	"Brandschenkestrasse	110")



		newContact	eq	DetailedContact(

				"Miffy",

				"Miller",

				"098-765-4321",

				"Brandschenkestrasse	110")

}

The	parameter	names	for	copy()	are	identical	to	the	constructor	parameters.	All
arguments	have	default	values	that	are	equal	to	the	current	values,	so	you
provide	only	the	ones	you	want	to	replace.

HashMap	and	HashSet
Creating	a	data	class	also	generates	an	appropriate	hash	function	so	that	objects
can	be	used	as	keys	in	HashMaps	and	HashSets:

//	DataClasses/HashCode.kt

package	dataclasses

import	atomictest.eq

data	class	Key(val	name:	String,	val	id:	Int)

fun	main()	{

		val	korvo:	Key	=	Key("Korvo",	19)

		korvo.hashCode()	eq	-2041757108

		val	map	=	HashMap<Key,	String>()

		map[korvo]	=	"Alien"

		map[korvo]	eq	"Alien"

		val	set	=	HashSet<Key>()

		set.add(korvo)

		set.contains(korvo)	eq	true

}

hashCode()	is	used	in	conjunction	with	equals()	to	rapidly	look	up	a	Key	in	a
HashMap	or	a	HashSet.	Creating	a	correct	hashCode()	by	hand	is	tricky	and
error-prone,	so	it	is	quite	beneficial	to	have	the	data	class	do	it	for	you.	Operator
Overloading	covers	equals()	and	hashCode()	in	more	detail.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Destructuring	Declarations

Suppose	you	want	to	return	more	than	one	item	from	a	function,	such	as	a
result	along	with	some	information	about	that	result.

The	Pair	class,	which	is	part	of	the	standard	library,	allows	you	to	return	two
values:

//	Destructuring/Pairs.kt

package	destructuring

import	atomictest.eq

fun	compute(input:	Int):	Pair<Int,	String>	=

		if	(input	>	5)

				Pair(input	*	2,	"High")

		else

				Pair(input	*	2,	"Low")

fun	main()	{

		compute(7)	eq	Pair(14,	"High")

		compute(4)	eq	Pair(8,	"Low")

		val	result	=	compute(5)

		result.first	eq	10

		result.second	eq	"Low"

}

We	specify	the	return	type	of	compute()	as	Pair<Int,	String>.	A	Pair	is	a
parameterized	type,	like	List	or	Set.

Returning	multiple	values	is	helpful,	but	we’d	also	like	a	convenient	way	to
unpack	the	results.	As	shown	above,	you	can	access	the	components	of	a	Pair
using	its	first	and	second	properties,	but	you	can	also	declare	and	initialize
several	identifiers	simultaneously	using	a	destructuring	declaration:

val	(a,	b,	c)	=	composedValue

This	destructures	a	composed	value	and	positionally	assigns	its	components.	The
syntax	differs	from	defining	a	single	identifier—for	destructuring,	you	put	the
names	of	the	identifiers	inside	parentheses.

Here’s	a	destructuring	declaration	for	the	Pair	returned	from	compute():



//	Destructuring/PairDestructuring.kt

import	destructuring.compute

import	atomictest.eq

fun	main()	{

		val	(value,	description)	=	compute(7)

		value	eq	14

		description	eq	"High"

}

The	Triple	class	combines	three	values,	but	that’s	as	far	as	it	goes.	This	is
intentional:	if	you	need	to	store	more	values,	or	if	you	find	yourself	using	many
Pairs	or	Triples,	consider	creating	special	classes	instead.

data	Classes	automatically	allow	destructuring	declarations:

//	Destructuring/Computation.kt

package	destructuring

import	atomictest.eq

data	class	Computation(

		val	data:	Int,

		val	info:	String

)

fun	evaluate(input:	Int)	=

		if	(input	>	5)

				Computation(input	*	2,	"High")

		else

				Computation(input	*	2,	"Low")

fun	main()	{

		val	(value,	description)	=	evaluate(7)

		value	eq	14

		description	eq	"High"

}

It’s	clearer	to	return	a	Computation	instead	of	a	Pair<Int,	String>.	Choosing	a
good	name	for	the	result	is	almost	as	important	as	choosing	a	good	self-
explanatory	name	for	the	function	itself.	Adding	or	removing	Computation
information	is	simpler	if	it’s	a	separate	class	rather	than	a	Pair.

When	you	unpack	an	instance	of	a	data	class,	you	must	assign	values	to	the	new
identifiers	in	the	same	order	you	define	the	properties	in	the	class:

//	Destructuring/Tuple.kt

package	destructuring

import	atomictest.eq

data	class	Tuple(

		val	i:	Int,

		val	d:	Double,

		val	s:	String,

		val	b:	Boolean,



		val	l:	List<Int>

)

fun	main()	{

		val	tuple	=	Tuple(

				1,	3.14,	"Mouse",	false,	listOf())

		val	(i,	d,	s,	b,	l)	=	tuple

		i	eq	1

		d	eq	3.14

		s	eq	"Mouse"

		b	eq	false

		l	eq	listOf()

		val	(_,	_,	animal)	=	tuple			//	[1]

		animal	eq	"Mouse"

}

[1]	If	you	don’t	need	some	of	the	identifiers,	you	may	use	underscores
instead	of	their	names,	or	omit	them	completely	if	they	appear	at	the	end.
Here,	the	unpacked	values	1	and	3.14	are	discarded	using	underscores,
"Mouse"	is	captured	into	animal,	and	false	and	the	empty	List	are
discarded	because	they	are	at	the	end	of	the	list.

The	properties	of	a	data	class	are	assigned	by	order,	not	by	name.	If	you
destructure	an	object	and	later	add	a	property	anywhere	except	the	end	of	its
data	class,	that	new	property	will	be	destructured	on	top	of	your	previous
identifier,	producing	unexpected	results	(see	Exercise	3).	If	your	custom	data
class	has	properties	with	identical	types,	the	compiler	can’t	detect	misuse	so	you
may	want	to	avoid	destructuring	it.	Destructuring	library	data	classes	like	Pair
or	Triple	is	safe,	because	they	don’t	change.

Using	a	for	loop,	you	can	iterate	over	a	Map	or	a	List	of	pairs	(or	other	data
classes)	and	destructure	each	element:

//	Destructuring/ForLoop.kt

import	atomictest.eq

fun	main()	{

		var	result	=	""

		val	map	=	mapOf(1	to	"one",	2	to	"two")

		for	((key,	value)	in	map)	{

				result	+=	"$key	=	$value,	"

		}

		result	eq	"1	=	one,	2	=	two,"

		result	=	""

		val	listOfPairs	=

				listOf(Pair(1,	"one"),	Pair(2,	"two"))

		for	((i,	s)	in	listOfPairs)	{

				result	+=	"($i,	$s),	"

		}

		result	eq	"(1,	one),	(2,	two),"

}



withIndex()	is	a	standard	library	extension	function	for	List.	It	returns	a
collection	of	IndexedValues,	which	can	be	destructured:

//	Destructuring/LoopWithIndex.kt

import	atomictest.trace

fun	main()	{

		val	list	=	listOf('a',	'b',	'c')

		for	((index,	value)	in	list.withIndex())	{

				trace("$index:$value")

		}

		trace	eq	"0:a	1:b	2:c"

}

Destructuring	declarations	are	only	allowed	for	local	vars	and	vals,	and	cannot
be	used	to	create	class	properties.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Nullable	Types

Consider	a	function	that	sometimes	produces	“no	result.”	When	this
happens,	the	function	doesn’t	produce	an	error	per	se.	Nothing	went	wrong,
there’s	just	“no	answer.”

A	good	example	is	retrieving	a	value	from	a	Map.	If	the	Map	doesn’t	contain	a
value	for	a	given	key,	it	can’t	give	you	an	answer	and	returns	a	null	reference	to
indicate	“no	value”:

//	NullableTypes/NullInMaps.kt

import	atomictest.eq

fun	main()	{

		val	map	=	mapOf(0	to	"yes",	1	to	"no")

		map[2]	eq	null

}

Languages	like	Java	allow	a	result	to	be	either	null	or	a	meaningful	value.
Unfortunately,	if	you	treat	null	the	same	way	you	treat	a	meaningful	value,	you
get	a	dramatic	failure	(In	Java,	this	produces	a	NullPointerException;	in	a
more	primitive	language	like	C,	a	null	pointer	can	crash	the	process	or	even	the
operating	system	or	machine).	The	creator	of	the	null	reference,	Tony	Hoare,
refers	to	it	as	“my	billion-dollar	mistake”	(although	it	has	arguably	cost	much
more	than	that).

One	possible	solution	to	this	problem	is	for	a	language	to	never	allow	nulls	in
the	first	place,	and	instead	introduce	a	special	“no	value”	indicator.	Kotlin	might
have	done	this,	except	that	it	must	interact	with	Java,	and	Java	uses	nulls.

Kotlin’s	solution	is	arguably	the	best	compromise:	types	default	to	non-nullable.
However,	if	something	can	produce	a	null	result,	you	must	append	a	question
mark	to	the	type	name	to	explicitly	tag	that	result	as	nullable:

//	NullableTypes/NullableTypes.kt

import	atomictest.eq

fun	main()	{

		val	s1	=	"abc"													//	[1]

		//	Compile-time	error:
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		//	val	s2:	String	=	null			//	[2]

		//	Nullable	definitions:

		val	s3:	String?	=	null					//	[3]

		val	s4:	String?	=	s1							//	[4]

		//	Compile-time	error:

		//	val	s5:	String	=	s4					//	[5]

		val	s6	=	s4																//	[6]

		s1	eq	"abc"

		s3	eq	null

		s4	eq	"abc"

		s6	eq	"abc"

}

[1]	s1	can’t	contain	a	null	reference.	All	the	vars	and	vals	we’ve	created
in	the	book	so	far	are	automatically	non-nullable.
[2]	The	error	message	is:	null	can	not	be	a	value	of	a	non-null	type	String.
[3]	To	define	an	identifier	that	can	contain	a	null	reference,	you	put	a	?	at
the	end	of	the	type	name.	Such	an	identifier	can	contain	either	null	or	a
regular	value.
[4]	Both	nulls	and	regular	non-nullable	values	can	be	stored	in	a	nullable
type.
[5]	You	can’t	assign	an	identifier	of	a	nullable	type	to	an	identifier	of	a	non-
null	type.	Kotlin	emits:	Type	mismatch:	inferred	type	is	String?	but	String
was	expected.	Even	if	the	actual	value	is	non-null	as	in	this	case	(we	know
it’s	"abc"),	Kotlin	won’t	allow	it	because	they	are	two	different	types.
[6]	If	you	use	type	inference,	Kotlin	produces	the	appropriate	type.	Here,	s6
is	nullable	because	s4	is	nullable.

Even	though	it	looks	like	we	just	modify	an	existing	type	by	adding	a	?	at	the
end,	we’re	actually	specifying	a	different	type.	For	example,	String	and	String?
are	two	different	types.	The	String?	type	forbids	the	operations	in	lines	[2]	and
[5],	thus	guaranteeing	that	a	value	of	a	non-nullable	type	is	never	null.

Retrieving	a	value	from	a	Map	using	square	brackets	produces	a	nullable	result,
because	the	underlying	Map	implementation	comes	from	Java:

//	NullableTypes/NullableInMap.kt

import	atomictest.eq

fun	main()	{

		val	map	=	mapOf(0	to	"yes",	1	to	"no")

		val	first:	String?	=	map[0]

		val	second:	String?	=	map[2]

		first	eq	"yes"

		second	eq	null

}



Why	is	it	important	to	know	that	a	value	can’t	be	null?	Many	operations
implicitly	assume	a	non-nullable	result.	For	example,	calling	a	member	function
will	fail	with	an	exception	if	the	receiver	value	is	null.	In	Java	such	a	call	will
fail	with	a	NullPointerException	(often	abbreviated	NPE).	Because	almost	any
value	can	be	null	in	Java,	any	function	invocation	can	fail	this	way.	In	these
cases	you	must	write	code	to	check	for	null	results,	or	rely	on	other	parts	of	the
code	to	guard	against	nulls.

In	Kotlin	you	can’t	simply	dereference	(call	a	member	function	or	access	a
member	property)	a	value	of	a	nullable	type:

//	NullableTypes/Dereference.kt

import	atomictest.eq

fun	main()	{

		val	s1:	String	=	"abc"

		val	s2:	String?	=	s1

		s1.length	eq	3									//	[1]

		//	Doesn't	compile:

		//	s2.length											//	[2]

}

You	can	access	members	of	a	non-nullable	type	as	in	[1].	If	you	reference
members	of	a	nullable	type,	as	in	[2],	Kotlin	emits	an	error.

Values	of	most	types	are	stored	as	references	to	the	objects	in	memory.	That’s	the
meaning	of	the	term	dereference—to	access	an	object,	you	retrieve	its	value
from	memory.

The	most	straightforward	way	to	ensure	that	dereferencing	a	nullable	type	won’t
throw	a	NullPointerException	is	to	explicitly	check	that	the	reference	is	not
null:

//	NullableTypes/ExplicitCheck.kt

import	atomictest.eq

fun	main()	{

		val	s:	String?	=	"abc"

		if	(s	!=	null)

				s.length	eq	3

}

After	the	explicit	if-check,	Kotlin	allows	you	to	dereference	a	nullable.	But
writing	this	if	whenever	you	work	with	nullable	types	is	too	noisy	for	such	a
common	operation.	Kotlin	has	concise	syntax	to	alleviate	this	problem,	which
you’ll	learn	about	in	subsequent	atoms.



Whenever	you	create	a	new	class,	Kotlin	automatically	includes	nullable	and
non-nullable	types:

//	NullableTypes/Amphibian.kt

package	nullabletypes

class	Amphibian

enum	class	Species	{

		Frog,	Toad,	Salamander,	Caecilian

}

fun	main()	{

		val	a1:	Amphibian	=	Amphibian()

		val	a2:	Amphibian?	=	null

		val	at1:	Species	=	Species.Toad

		val	at2:	Species?	=	null

}

As	you	can	see,	we	didn’t	do	anything	special	to	produce	the	complementary
nullable	types—they’re	available	by	default.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Safe	Calls	&	the	Elvis	Operator

Kotlin	provides	convenient	operations	for	handling	nullability.

Nullable	types	come	with	numerous	restrictions.	You	can’t	simply	dereference
an	identifier	of	a	nullable	type:

//	SafeCallsAndElvis/DereferenceNull.kt

fun	main()	{

		val	s:	String?	=	null

		//	Doesn't	compile:

		//	s.length								//	[1]

}

Uncommenting	[1]	produces	a	compile-time	error:	Only	safe	(?.)	or	non-null
asserted	(!!.)	calls	are	allowed	on	a	nullable	receiver	of	type	String?.

A	safe	call	replaces	the	dot	(.)	in	a	regular	call	with	a	question	mark	and	a	dot
(?.),	without	intervening	space.	Safe	calls	access	members	of	a	nullable	in	a	way
that	ensures	no	exceptions	are	thrown.	They	only	perform	an	operation	when	the
receiver	is	not	null:

//	SafeCallsAndElvis/SafeOperation.kt

package	safecalls

import	atomictest.*

fun	String.echo()	{

		trace(toUpperCase())

		trace(this)

		trace(toLowerCase())

}

fun	main()	{

		val	s1:	String?	=	"Howdy!"

		s1?.echo()																		//	[1]

		val	s2:	String?	=	null

		s2?.echo()																		//	[2]

		trace	eq	"""

				HOWDY!

				Howdy!

				howdy!

		"""

}



Line	[1]	calls	echo()	and	produces	results	in	the	trace,	while	line	[2]	does
nothing	because	the	receiver	s2	is	null.

Safe	calls	are	a	clean	way	to	capture	results:

//	SafeCallsAndElvis/SafeCall.kt

package	safecalls

import	atomictest.eq

fun	checkLength(s:	String?,	expected:	Int?)	{

		val	length1	=

				if	(s	!=	null)	s.length	else	null		//	[1]

		val	length2	=	s?.length														//	[2]

		length1	eq	expected

		length2	eq	expected

}

fun	main()	{

		checkLength("abc",	3)

		checkLength(null,	null)

}

Line	[2]	achieves	the	same	effect	as	line	[1].	If	the	receiver	is	not	null	it
performs	a	normal	access	(s.length).	If	the	receiver	is	null	it	doesn’t	perform
the	s.length	call	(which	would	cause	an	exception),	but	produces	null	for	the
expression.

What	if	you	need	something	more	than	the	null	produced	by	?.?	The	Elvis
operator	provides	an	alternative.	This	operator	is	a	question	mark	followed	by	a
colon	(?:),	with	no	intervening	space.	It	is	named	for	an	emoticon	of	the
musician	Elvis	Presley,	and	is	also	a	play	on	the	words	“else-if”	(which	sounds
vaguely	like	“Elvis”).

A	number	of	programming	languages	provide	a	null	coalescing	operator	that
performs	the	same	action	as	Kotlin’s	Elvis	operator.

If	the	expression	on	the	left	of	?:	is	not	null,	that	expression	becomes	the	result.
If	the	left-hand	expression	is	null,	then	the	expression	on	the	right	of	the	?:
becomes	the	result:

//	SafeCallsAndElvis/ElvisOperator.kt

import	atomictest.eq

fun	main()	{

		val	s1:	String?	=	"abc"

		(s1	?:	"---")	eq	"abc"

		val	s2:	String?	=	null

		(s2	?:	"---")	eq	"---"

}



s1	is	not	null,	so	the	Elvis	operator	produces	"abc"	as	the	result.	Because	s2	is
null,	the	Elvis	operator	produces	the	alternate	result	of	"---".

The	Elvis	operator	is	typically	used	after	a	safe	call,	to	produce	a	meaningful
value	instead	of	the	default	null,	as	you	see	in	[2]:

//	SafeCallsAndElvis/ElvisCall.kt

package	safecalls

import	atomictest.eq

fun	checkLength(s:	String?,	expected:	Int)	{

		val	length1	=

				if	(s	!=	null)	s.length	else	0				//	[1]

		val	length2	=	s?.length	?:	0								//	[2]

		length1	eq	expected

		length2	eq	expected

}

fun	main()	{

		checkLength("abc",	3)

		checkLength(null,	0)

}

This	checkLength()	function	is	quite	similar	to	the	one	in	SafeCall.kt	above.
The	expected	parameter	type	is	now	non-nullable.	[1]	and	[2]	produce	zero
instead	of	null.

Safe	calls	allow	you	to	write	chained	calls	concisely,	when	some	elements	in	the
chain	might	be	null	and	you’re	only	interested	in	the	final	result:

//	SafeCallsAndElvis/ChainedCalls.kt

package	safecalls

import	atomictest.eq

class	Person(

		val	name:	String,

		var	friend:	Person?	=	null

)

fun	main()	{

		val	alice	=	Person("Alice")

		alice.friend?.friend?.name	eq	null			//	[1]

		val	bob	=	Person("Bob")

		val	charlie	=	Person("Charlie",	bob)

		bob.friend	=	charlie

		bob.friend?.friend?.name	eq	"Bob"				//	[2]

		(alice.friend?.friend?.name

				?:	"Unknown")	eq	"Unknown"									//	[3]

}

When	you	chain	access	to	several	members	using	safe	calls,	the	result	is	null	if
any	intermediate	expressions	are	null.



[1]	The	property	alice.friend	is	null,	so	the	rest	of	the	calls	return	null.
[2]	All	intermediate	calls	produce	meaningful	values.
[3]	An	Elvis	operator	after	the	chain	of	safe	calls	provides	an	alternate
value	if	any	intermediate	element	is	null.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Non-Null	Assertions

A	second	approach	to	the	problem	of	nullable	types	is	to	have	special
knowledge	that	the	reference	in	question	isn’t	null.

To	make	this	claim,	use	the	double	exclamation	point,	!!,	called	the	non-null
assertion.	If	this	looks	alarming,	it	should:	believing	that	something	can’t	be
null	is	the	source	of	most	null-related	program	failures	(the	rest	come	from	not
realizing	that	a	null	can	happen).

x!!	means	“forget	the	fact	that	x	might	be	null—I	guarantee	that	it’s	not	null.”
x!!	produces	x	if	x	isn’t	null,	otherwise	it	throws	an	exception:

//	NonNullAssertions/NonNullAssert.kt

import	atomictest.*

fun	main()	{

		var	x:	String?	=	"abc"

		x!!	eq	"abc"

		x	=	null

		capture	{

				val	s:	String	=	x!!

		}	eq	"NullPointerException"

}

The	definition	val	s:	String	=	x!!	tells	Kotlin	to	ignore	what	it	thinks	it
knows	about	x	and	just	assign	it	to	s,	which	is	a	non-nullable	reference.
Fortunately,	there’s	run-time	support	that	throws	a	NullPointerException	when
x	is	null.

Ordinarily	you	won’t	use	the	!!	by	itself,	but	instead	in	conjunction	with	a	.
dereference:

//	NonNullAssertions/NonNullAssertCall.kt

import	atomictest.eq

fun	main()	{

		val	s:	String?	=	"abc"

		s!!.length	eq	3

}



If	you	limit	yourself	to	a	single	non-null	asserted	call	per	line,	it’s	easier	to	locate
a	failure	when	the	exception	gives	you	a	line	number.

The	safe	call	?.	is	a	single	operator,	but	a	non-null	asserted	call	consists	of	two
operators:	the	non-null	assertion	(!!)	and	a	dereference	(.).	As	you	saw	in
NonNullAssert.kt,	you	can	use	a	non-null	assertion	by	itself.

Avoid	non-null	assertions	and	prefer	safe	calls	or	explicit	checks.	Non-null
assertions	were	introduced	to	enable	interaction	between	Kotlin	and	Java,	and
for	the	rare	cases	when	Kotlin	isn’t	smart	enough	to	ensure	the	necessary	checks
are	performed.

If	you	frequently	use	non-null	assertions	in	your	code	for	the	same	operation,	it’s
better	to	use	a	separate	function	with	a	specific	assertion	describing	the	problem.
As	an	example,	suppose	your	program	logic	requires	a	particular	key	to	be
present	in	a	Map,	and	you	prefer	getting	an	exception	instead	of	silently	doing
nothing	if	the	key	is	absent.	Instead	of	extracting	the	value	with	the	usual
approach	(square	brackets),	getValue()	throws	NoSuchElementException	if	a
key	is	missing:

//	NonNullAssertions/ValueFromMap.kt

import	atomictest.*

fun	main()	{

		val	map	=	mapOf(1	to	"one")

		map[1]!!.toUpperCase()	eq	"ONE"

		map.getValue(1).toUpperCase()	eq	"ONE"

		capture	{

				map[2]!!.toUpperCase()

		}	eq	"NullPointerException"

		capture	{

				map.getValue(2).toUpperCase()

		}	eq	"NoSuchElementException:	"	+

				"Key	2	is	missing	in	the	map."

}

Throwing	the	specific	NoSuchElementException	gives	you	more	useful	details
when	something	goes	wrong.

-

Optimal	code	uses	only	safe	calls	and	special	functions	that	throw	detailed
exceptions.	Only	use	non-null	asserted	calls	when	you	absolutely	must.
Although	non-null	assertions	were	included	to	support	interaction	with	Java



code,	there	are	better	ways	to	interact	with	Java,	which	you	can	learn	about	in
Appendix	B:	Java	Interoperability.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Extensions	for	Nullable	Types

Sometimes	it’s	not	what	it	looks	like.

s?.f()	implies	that	s	is	nullable—otherwise	you	could	simply	call	s.f().
Similarly,	t.f()	seems	to	imply	that	t	is	non-nullable	because	Kotlin	doesn’t
require	a	safe	call	or	programmatic	check.	However,	t	is	not	necessarily	non-
nullable.

The	Kotlin	standard	library	provides	String	extension	functions,	including:

isNullOrEmpty():	Tests	whether	the	receiver	String	is	null	or	empty.
isNullOrBlank():	Performs	the	same	check	as	isNullOrEmpty()	and
allows	the	receiver	String	to	consist	solely	of	whitespace	characters,
including	tabs	(\t)	and	newlines	(\n).

Here’s	a	basic	test	of	these	functions:

//	NullableExtensions/StringIsNullOr.kt

import	atomictest.eq

fun	main()	{

		val	s1:	String?	=	null

		s1.isNullOrEmpty()	eq	true

		s1.isNullOrBlank()	eq	true

		val	s2	=	""

		s2.isNullOrEmpty()	eq	true

		s2.isNullOrBlank()	eq	true

		val	s3:	String	=	"	\t\n"

		s3.isNullOrEmpty()	eq	false

		s3.isNullOrBlank()	eq	true

}

The	function	names	suggest	they	are	for	nullable	types.	However,	even	though
s1	is	nullable,	you	can	call	isNullOrEmpty()	or	isNullOrBlank()	without	a
safe	call	or	explicit	check.	That’s	because	these	are	extension	functions	on	the
nullable	type	String?.

We	can	rewrite	isNullOrEmpty()	as	a	non-extension	function	that	takes	the
nullable	String	s	as	a	parameter:



//	NullableExtensions/NullableParameter.kt

package	nullableextensions

import	atomictest.eq

fun	isNullOrEmpty(s:	String?):	Boolean	=

		s	==	null	||	s.isEmpty()

fun	main()	{

		isNullOrEmpty(null)	eq	true

		isNullOrEmpty("")	eq	true

}

Because	s	is	nullable,	we	explicitly	check	for	null	or	empty.	The	expression	s
==	null	||	s.isEmpty()	uses	short-circuiting:	if	the	first	part	of	the	expression
is	true,	the	rest	of	the	expression	is	not	evaluated,	thus	preventing	a	null	pointer
exception.

Extension	functions	use	this	to	represent	the	receiver	(the	object	of	the	type
being	extended).	To	make	the	receiver	nullable,	add	?	to	the	type	being
extended:

//	NullableExtensions/NullableExtension.kt

package	nullableextensions

import	atomictest.eq

fun	String?.isNullOrEmpty():	Boolean	=

		this	==	null	||	isEmpty()

fun	main()	{

		"".isNullOrEmpty()	eq	true

}

isNullOrEmpty()	is	more	readable	as	an	extension	function.

-

Take	care	when	using	extensions	for	nullable	types.	They	are	great	for	simple
cases	like	isNullOrEmpty()	and	isNullOrBlank(),	especially	with	self-
explanatory	names	that	imply	the	receiver	might	be	null.	In	general,	it’s	better
to	declare	regular	(non-nullable)	extensions.	Safe	calls	and	explicit	checks
clarify	the	receiver’s	nullability,	while	extensions	for	nullable	types	may	conceal
nullability	and	confuse	the	reader	of	your	code	(probably,	“future	you”).

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Introduction	to	Generics

Generics	create	parameterized	types:	components	that	work	across	multiple
types.

The	term	“generic”	means	“pertaining	or	appropriate	to	large	groups	of	classes.”
The	original	intent	of	generics	in	programming	languages	was	to	provide	the
programmer	maximum	expressiveness	when	writing	classes	or	functions,	by
loosening	type	constraints	on	those	classes	or	functions.

One	of	the	most	compelling	initial	motivations	for	generics	is	to	create	collection
classes,	which	you’ve	seen	in	the	Lists,	Sets	and	Maps	used	for	the	examples	in
this	book.	A	collection	is	an	object	that	holds	other	objects.	Many	programs
require	you	to	hold	a	group	of	objects	while	you	use	them,	so	collections	are	one
of	the	most	reusable	of	class	libraries.

Let’s	look	at	a	class	that	holds	a	single	object.	This	class	specifies	the	exact	type
of	that	object:

//	IntroGenerics/RigidHolder.kt

package	introgenerics

import	atomictest.eq

data	class	Automobile(val	brand:	String)

class	RigidHolder(private	val	a:	Automobile)	{

		fun	getValue()	=	a

}

fun	main()	{

		val	holder	=	RigidHolder(Automobile("BMW"))

		holder.getValue()	eq

				"Automobile(brand=BMW)"

}

RigidHolder	is	not	a	particularly	reusable	tool;	it	can’t	hold	anything	but	an
Automobile.	We	would	prefer	not	to	write	a	new	type	of	holder	for	every
different	type.	To	achieve	this,	we	use	a	type	parameter	instead	of	Automobile.

To	define	a	generic	type,	add	angle	brackets	(<>)	containing	one	or	more	generic
placeholders	and	put	this	generic	specification	after	the	class	name.	Here,	the



generic	placeholder	T	represents	the	unknown	type	and	is	used	within	the	class
as	if	it	were	a	regular	type:

//	IntroGenerics/GenericHolder.kt

package	introgenerics

import	atomictest.eq

class	GenericHolder<T>(															//	[1]

		private	val	value:	T

)	{

		fun	getValue():	T	=	value

}

fun	main()	{

		val	h1	=	GenericHolder(Automobile("Ford"))

		val	a:	Automobile	=	h1.getValue()			//	[2]

		a	eq	"Automobile(brand=Ford)"

		val	h2	=	GenericHolder(1)

		val	i:	Int	=	h2.getValue()										//	[3]

		i	eq	1

		val	h3	=	GenericHolder("Chartreuse")

		val	s:	String	=	h3.getValue()							//	[4]

		s	eq	"Chartreuse"

}

[1]	GenericHolder	stores	a	T,	and	its	member	function	getValue()	returns
a	T.

When	you	call	getValue()	as	in	[2],	[3]	or	[4]	,	the	result	is	automatically	the
right	type.

It	seems	like	we	might	be	able	to	solve	this	problem	with	a	“universal	type”—a
type	that	is	the	parent	of	all	other	types.	In	Kotlin,	this	universal	type	is	called
Any.	As	the	name	implies,	Any	allows	any	type	of	argument.	If	you	want	to	pass	a
variety	of	types	to	a	function	and	they	have	nothing	in	common,	Any	solves	the
problem.

At	a	glance,	it	looks	like	we	might	be	able	to	use	Any	instead	of	T	in
GenericHolder.kt:

//	IntroGenerics/AnyInstead.kt

package	introgenerics

import	atomictest.eq

class	AnyHolder(private	val	value:	Any)	{

		fun	getValue():	Any	=	value

}

class	Dog	{

		fun	bark()	=	"Ruff!"

}



fun	main()	{

		val	holder	=	AnyHolder(Dog())

		val	any	=	holder.getValue()

		//	Doesn't	compile:

		//	any.bark()

		val	genericHolder	=	GenericHolder(Dog())

		val	dog	=	genericHolder.getValue()

		dog.bark()	eq	"Ruff!"

}

Any	does	in	fact	work	for	simple	cases,	but	as	soon	as	we	need	the	specific	type
—to	call	bark()	for	the	Dog—it	doesn’t	work	because	we	lose	track	of	the	fact
that	it’s	a	Dog	when	it	is	assigned	to	the	Any.	When	we	pass	a	Dog	as	an	Any,	the
result	is	just	an	Any,	which	has	no	bark().

Using	generics	retains	the	information	that,	in	this	case,	we	actually	have	a	Dog,
which	means	we	can	perform	Dog	operations	on	the	object	returned	by
getValue().

Generic	Functions
To	define	a	generic	function,	specify	a	generic	type	parameter	in	angle	brackets
before	the	function	name:

//	IntroGenerics/GenericFunction.kt

package	introgenerics

import	atomictest.eq

fun	<T>	identity(arg:	T):	T	=	arg

fun	main()	{

		identity("Yellow")	eq	"Yellow"

		identity(1)	eq	1

		val	d:	Dog	=	identity(Dog())

		d.bark()	eq	"Ruff!"

}

d	has	type	Dog	because	identity()	is	a	generic	function	and	returns	a	T.

The	Kotlin	standard	library	contains	many	generic	extension	functions	for
collections.	To	write	a	generic	extension	function,	put	the	generic	specification
before	the	receiver.	For	example,	notice	how	first()	and	firstOrNull()	are
defined:

//	IntroGenerics/GenericListExtensions.kt

package	introgenerics

import	atomictest.eq

fun	<T>	List<T>.first():	T	{



		if	(isEmpty())

				throw	NoSuchElementException("Empty	List")

		return	this[0]

}

fun	<T>	List<T>.firstOrNull():	T?	=

		if	(isEmpty())	null	else	this[0]

fun	main()	{

		listOf(1,	2,	3).first()	eq	1

		val	i:	Int?	=																					//	[1]

				listOf(1,	2,	3).firstOrNull()

		i	eq	1

		val	s:	String?	=																		//	[2]

				listOf<String>().firstOrNull()

		s	eq	null

}

first()	and	firstOrNull()	work	with	any	kind	of	List.	To	return	a	T,	they
must	be	generic	functions.

Notice	how	firstOrNull()	specifies	a	nullable	return	type.	Line	[1]	shows	that
calling	the	function	on	List<Int>	returns	the	nullable	type	Int?.	Line	[2]	shows
that	calling	firstOrNull()	on	List<String>	returns	String?.	Kotlin	requires
the	?	on	lines	[1]	and	[2]—take	them	out	and	see	the	error	messages.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Extension	Properties

Just	as	functions	can	be	extension	functions,	properties	can	be	extension
properties.

The	receiver	type	specification	for	extension	properties	is	similar	to	the	syntax
for	extension	functions—the	extended	type	comes	right	before	the	function	or
property	name:

fun	ReceiverType.extensionFunction()	{	...	}

val	ReceiverType.extensionProperty:	PropType

		get()	{	...	}

An	extension	property	requires	a	custom	getter.	The	property	value	is	computed
for	each	access:

//	ExtensionProperties/StringIndices.kt

package	extensionproperties

import	atomictest.eq

val	String.indices:	IntRange

		get()	=	0	until	length

fun	main()	{

		"abc".indices	eq	0..2

}

Although	you	can	convert	any	extension	function	without	parameters	into	a
property,	we	recommend	thinking	about	it	first.	The	reasons	described	in
Property	Accessors	for	choosing	between	properties	and	functions	also	apply	to
extension	properties.	Preferring	a	property	over	a	function	makes	sense	only	if
it’s	simple	enough	and	improves	readability.

You	can	define	a	generic	extension	property.	Here,	we	convert	firstOrNull()
from	Introduction	to	Generics	to	an	extension	property:

//	ExtensionProperties/GenericListExt.kt

package	extensionproperties

import	atomictest.eq

val	<T>	List<T>.firstOrNull:	T?

		get()	=	if	(isEmpty())	null	else	this[0]

fun	main()	{



		listOf(1,	2,	3).firstOrNull	eq	1

		listOf<String>().firstOrNull	eq	null

}

The	Kotlin	Style	Guide	recommends	a	function	over	a	property	if	the	function
throws	an	exception.

When	the	generic	argument	type	isn’t	used,	you	may	replace	it	with	*.	This	is
called	a	star	projection:

//	ExtensionProperties/ListOfStar.kt

package	extensionproperties

import	atomictest.eq

val	List<*>.indices:	IntRange

		get()	=	0	until	size

fun	main()	{

		listOf(1).indices	eq	0..0

		listOf('a',	'b',	'c',	'd').indices	eq	0..3

		emptyList<Int>().indices	eq	IntRange.EMPTY

}

When	you	use	List<*>,	you	lose	all	specific	information	about	the	type
contained	in	the	List.	For	example,	an	element	of	a	List<*>	can	only	be
assigned	to	Any?:

//	ExtensionProperties/AnyFromListOfStar.kt

import	atomictest.eq

fun	main()	{

		val	list:	List<*>	=	listOf(1,	2)

		val	any:	Any?	=	list[0]

		any	eq	1

}

We	have	no	information	whether	a	value	stored	in	a	List<*>	is	nullable	or	not,
which	is	why	it	can	be	only	assigned	to	a	nullable	Any?	type.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.

https://kotlinlang.org/docs/reference/coding-conventions.html


break	&	continue

break	and	continue	allow	you	to	“jump”	within	a	loop.

Early	programmers	wrote	directly	to	the	processor,	using	either	numerical
opcodes	as	instructions,	or	assembly	language,	which	translates	into	opcodes.
This	kind	of	programming	is	as	low-level	as	you	can	get.	For	example,	many
coding	decisions	were	facilitated	by	“jumping”	directly	to	other	places	in	the
code.	Early	higher-level	languages	(including	FORTRAN,	ALGOL,	Pascal,	C
and	C++)	duplicated	this	practice	by	implementing	a	goto	keyword.

goto	made	assembly-language	programmers	more	comfortable	as	they
transitioned	to	higher-level	languages.	As	we	accumulated	more	experience,
however,	the	programming	community	discovered	that	unconditional	jumps
produce	complicated	and	un-maintainable	code.	This	generated	a	large	backlash
against	goto,	and	most	subsequent	languages	have	avoided	any	kind	of
unconditional	jump.

Kotlin	provides	a	constrained	jump	in	the	form	of	break	and	continue.	These
are	tied	to	the	looping	constructs	for,	while	and	do-while—you	can	only	use
break	and	continue	from	within	such	loops.	In	addition,	continue	can	only
jump	to	the	beginning	of	a	loop,	and	break	can	only	jump	to	the	end	of	a	loop.

In	practice	you	rarely	use	break	and	continue	when	writing	new	Kotlin	code.
These	features	are	artifacts	from	earlier	languages.	Although	they	are
occasionally	useful,	you’ll	learn	in	this	book	that	Kotlin	provides	superior
mechanisms.

Here’s	an	example	with	a	for	loop	containing	both	a	continue	and	a	break:

//	BreakAndContinue/ForControl.kt

import	atomictest.eq

fun	main()	{

		val	nums	=	mutableListOf(0)

		for	(i	in	4	until	100	step	4)	{	//	[1]

				if	(i	==	8)	continue										//	[2]

				if	(i	==	40)	break												//	[3]

				nums.add(i)



		}																															//	[4]

		nums	eq	"[0,	4,	12,	16,	20,	24,	28,	32,	36]"

}

The	example	aggregates	Ints	into	a	mutable	List.	The	continue	at	[2]	jumps
back	to	the	beginning	of	the	loop,	which	is	the	opening	brace	at	[1].	It
“continues”	execution	starting	with	the	next	iteration	of	the	loop.	Note	that	the
code	following	continue	inside	the	for	loop	body	is	not	executed:	nums.add(i)
is	not	called	when	i	==	8	so	you	don’t	see	it	in	the	resulting	nums.

When	i	==	40,	break	is	executed	at	[3],	which	“breaks	out”	of	the	for	loop	by
jumping	to	the	end	of	its	scope	at	[4].	The	numbers	beginning	at	40	are	not
added	to	the	resulting	List	because	the	for	loop	stops	executing.

Lines	[2]	and	[3]	are	interchangeable	because	their	logic	doesn’t	overlap.	Try
swapping	the	lines	and	verify	that	the	output	doesn’t	change.

We	can	rewrite	ForControl.kt	using	a	while	loop:

//	BreakAndContinue/WhileControl.kt

import	atomictest.eq

fun	main()	{

		val	nums	=	mutableListOf(0)

		var	i	=	0

		while	(i	<	100)	{

				i	+=	4

				if	(i	==	8)	continue

				if	(i	==	40)	break

				nums.add(i)

		}

		nums	eq	"[0,	4,	12,	16,	20,	24,	28,	32,	36]"

}

The	break	and	continue	behavior	remains	the	same,	as	it	does	for	a	do-while
loop:

//	BreakAndContinue/DoWhileControl.kt

import	atomictest.eq

fun	main()	{

		val	nums	=	mutableListOf(0)

		var	i	=	0

		do	{

				i	+=	4

				if	(i	==	8)	continue

				if	(i	==	40)	break

				nums.add(i)

		}	while	(i	<	100)

		nums	eq	"[0,	4,	12,	16,	20,	24,	28,	32,	36]"

}



A	do-while	loop	always	executes	at	least	once,	because	the	while	test	is	at	the
end	of	the	loop.

Labels
Plain	break	and	continue	can	jump	no	further	than	the	boundaries	of	their	local
loop.	Labels	allow	break	and	continue	to	jump	to	the	boundaries	of	enclosing
loops,	so	you	aren’t	limited	to	the	scope	of	the	current	loop.

You	create	a	label	by	using	label@,	where	label	can	be	any	name.	Here,	the
label	is	outer:

//	BreakAndContinue/ForLabeled.kt

import	atomictest.eq

fun	main()	{

		val	strings	=	mutableListOf<String>()

		outer@	for	(c	in	'a'..'e')	{

				for	(i	in	1..9)	{

						if	(i	==	5)	continue@outer

						if	("$c$i"	==	"c3")	break@outer

						strings.add("$c$i")

				}

		}

		strings	eq	listOf("a1",	"a2",	"a3",	"a4",

				"b1",	"b2",	"b3",	"b4",	"c1",	"c2")

}

The	labeled	continue	expression	continue@outer	continues	back	to	the	label
outer@.	The	labeled	break	expression	break@outer	finds	the	end	of	the	block
named	outer@,	and	proceeds	from	there.

Labels	work	with	while	and	do-while:

//	BreakAndContinue/WhileLabeled.kt

import	atomictest.eq

fun	main()	{

		val	strings	=	mutableListOf<String>()

		var	c	=	'a'	-	1

		outer@	while	(c	<	'f')	{

				c	+=	1

				var	i	=	0

				do	{

						i++

						if	(i	==	5)	continue@outer

						if	("$c$i"	==	"c3")	break@outer

						strings.add("$c$i")

				}	while	(i	<	10)

		}

		strings	eq	listOf("a1",	"a2",	"a3",	"a4",

				"b1",	"b2",	"b3",	"b4",	"c1",	"c2")

}



WhileLabeled.kt	can	be	rewritten	as:

//	BreakAndContinue/Improved.kt

import	atomictest.eq

fun	main()	{

		val	strings	=	mutableListOf<String>()

		for	(c	in	'a'..'c')	{

				for	(i	in	1..4)	{

						val	value	=	"$c$i"

						if	(value	<	"c3")	{					//	[1]

								strings.add(value)

						}

				}

		}

		strings	eq	listOf("a1",	"a2",	"a3",	"a4",

				"b1",	"b2",	"b3",	"b4",	"c1",	"c2")

}

This	is	far	more	comprehensible.	In	line	[1],	we	only	add	Strings	that	occur
(alphabetically)	before	"c3".	This	produces	the	same	behavior	as	using	break
when	reaching	"c3"	in	the	previous	versions	of	the	example.

-

break	and	continue	tend	to	create	complicated	and	un-maintainable	code.
Although	these	jumps	are	somewhat	more	civilized	than	“goto,”	they	still
interrupt	program	flow.	Code	without	jumps	is	almost	always	easier	to
understand.

In	some	cases,	you	can	write	the	conditions	for	iteration	explicitly	instead	of
using	break	and	continue,	as	we	did	in	the	example	above.	In	other	cases,	you
can	restructure	your	code	and	introduce	new	functions.	Both	break	and
continue	can	be	replaced	with	return	if	you	extract	the	whole	loop	or	the	loop
body	into	new	functions.	In	the	next	section,	Functional	Programming,	you’ll
learn	to	write	clear	code	without	using	break	and	continue.

Consider	alternative	approaches,	and	choose	the	simpler	and	more	readable
solution.	This	typically	won’t	include	break	and	continue.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



SECTION	IV:	FUNCTIONAL	PROGRAMMING

The	unavoidable	price	of	reliability	is	simplicity—C.A.R.	Hoare



Lambdas

Lambdas	produce	compact	code	that’s	easier	to	understand.

A	lambda	(also	called	a	function	literal)	is	a	low-ceremony	function:	it	has	no
name,	requires	a	minimal	amount	of	code	to	create,	and	you	can	insert	it	directly
into	other	code.

As	a	starting	point,	consider	map(),	which	works	with	collections	like	List.	The
parameter	for	map()	is	a	transformation	function	which	is	applied	to	each
element	in	a	collection.	map()	returns	a	new	List	containing	all	the	transformed
elements.	Here,	we	transform	each	List	item	to	a	String	surrounded	with	[]:

//	Lambdas/BasicLambda.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4)

		val	result	=	list.map({	n:	Int	->	"[$n]"	})

		result	eq	listOf("[1]",	"[2]",	"[3]",	"[4]")

}

The	lambda	is	the	code	within	the	curly	braces	used	in	the	initialization	of
result.	The	parameter	list	is	separated	from	the	function	body	by	an	arrow	->
(the	same	arrow	used	in	when	expressions).

The	function	body	can	be	one	or	more	expressions.	The	final	expression
becomes	the	return	value	of	the	lambda.

BasicLambda.kt	shows	the	full	lambda	syntax,	but	this	can	often	be	simplified.
We	typically	create	and	use	a	lambda	in	place,	which	means	Kotlin	can	usually
infer	type	information.	Here,	the	type	of	n	is	inferred:

//	Lambdas/LambdaTypeInference.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4)

		val	result	=	list.map({	n	->	"[$n]"	})

		result	eq	listOf("[1]",	"[2]",	"[3]",	"[4]")

}



Kotlin	can	tell	n	is	an	Int	because	the	lambda	is	being	used	with	a	List<Int>.

If	there’s	only	a	single	parameter,	Kotlin	generates	the	name	it	for	that
parameter,	which	means	we	no	longer	need	the	n	->:

//	Lambdas/LambdaIt.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4)

		val	result	=	list.map({	"[$it]"	})

		result	eq	listOf("[1]",	"[2]",	"[3]",	"[4]")

}

map()	works	with	a	List	of	any	type.	Here,	Kotlin	infers	the	type	of	the	lambda
argument	it	to	be	Char:

//	Lambdas/Mapping.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf('a',	'b',	'c',	'd')

		val	result	=

				list.map({	"[${it.toUpperCase()}]"	})

		result	eq	listOf("[A]",	"[B]",	"[C]",	"[D]")

}

If	the	lambda	is	the	only	function	argument,	or	the	last	argument,	you	can
remove	the	parentheses	around	the	curly	braces,	producing	cleaner	syntax:

//	Lambdas/OmittingParentheses.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf('a',	'b',	'c',	'd')

		val	result	=

				list.map	{	"[${it.toUpperCase()}]"	}

		result	eq	listOf("[A]",	"[B]",	"[C]",	"[D]")

}

If	the	function	takes	more	than	one	argument,	all	except	the	last	lambda
argument	must	be	in	parentheses.	For	example,	you	can	specify	the	last	argument
for	joinToString()	as	a	lambda.	The	lambda	is	used	to	transform	each	element
to	a	String,	then	all	the	elements	are	joined:

//	Lambdas/JoinToString.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(9,	11,	23,	32)

		list.joinToString("	")	{	"[$it]"	}	eq

				"[9]	[11]	[23]	[32]"

}



If	you	want	to	provide	the	lambda	as	a	named	argument,	you	must	place	the
lambda	inside	the	parentheses	of	the	argument	list:

//	Lambdas/LambdaAndNamedArgs.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(9,	11,	23,	32)

		list.joinToString(

				separator	=	"	",

				transform	=	{	"[$it]"	}

		)	eq	"[9]	[11]	[23]	[32]"

}

Here’s	the	syntax	for	a	lambda	with	more	than	one	parameter:

//	Lambdas/TwoArgLambda.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf('a',	'b',	'c')

		list.mapIndexed	{	index,	element	->

				"[$index:	$element]"

		}	eq	listOf("[0:	a]",	"[1:	b]",	"[2:	c]")

}

This	uses	the	mapIndexed()	library	function,	which	takes	each	element	in	list
and	produces	the	index	of	that	element	together	with	the	element.	The	lambda
that	we	apply	after	mapIndexed()	requires	two	arguments	to	match	the	index	and
the	element	(which	is	a	character,	in	the	case	of	List<Char>).

If	you	aren’t	using	a	particular	argument,	you	can	ignore	it	using	an	underscore
to	eliminate	compiler	warnings	about	unused	identifiers:

//	Lambdas/Underscore.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf('a',	'b',	'c')

		list.mapIndexed	{	index,	_	->

				"[$index]"

		}	eq	listOf("[0]",	"[1]",	"[2]")

}

Note	that	Underscore.kt	can	be	rewritten	using	list.indices:

//	Lambdas/ListIndicesMap.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf('a',	'b',	'c')

		list.indices.map	{

				"[$it]"



		}	eq	listOf("[0]",	"[1]",	"[2]")

}

Lambdas	can	have	zero	parameters,	in	which	case	you	can	leave	the	arrow	for
emphasis,	but	the	Kotlin	style	guide	recommends	omitting	the	arrow:

//	Lambdas/ZeroArguments.kt

import	atomictest.*

fun	main()	{

		run	{	->	trace("A	Lambda")	}

		run	{	trace("Without	args")	}

		trace	eq	"""

				A	Lambda

				Without	args

		"""

}

The	standard	library	run()	simply	calls	its	lambda	argument.

-

You	can	use	a	lambda	anywhere	you	use	a	regular	function,	but	if	the	lambda
becomes	too	complex	it’s	often	better	to	define	a	named	function,	for	clarity,
even	if	you’re	only	going	to	use	it	once.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



The	Importance	of	Lambdas

Lambdas	may	seem	like	syntax	sugar,	but	they	provide	important	power	to
your	programming.

Code	often	manipulates	the	contents	of	a	collection,	and	typically	repeats	these
manipulations	with	minor	modifications.	Consider	selecting	elements	from	a
collection,	such	as	people	under	a	given	age,	employees	with	a	specific	role,
citizens	of	a	particular	city,	or	unfinished	orders.	Here’s	an	example	that	selects
even	numbers	from	a	list.	Suppose	we	don’t	have	a	rich	library	of	functions	for
working	with	collections—we’d	have	to	implement	our	own	filterEven()
operation:

//	ImportanceOfLambdas/FilterEven.kt

package	importanceoflambdas

import	atomictest.eq

fun	filterEven(nums:	List<Int>):	List<Int>	{

		val	result	=	mutableListOf<Int>()

		for	(i	in	nums)	{

				if	(i	%	2	==	0)	{				//	[1]

						result	+=	i

				}

		}

		return	result

}

fun	main()	{

		filterEven(listOf(1,	2,	3,	4))	eq

				listOf(2,	4)

}

If	an	element	has	a	remainder	of	0	when	divided	by	2,	it’s	appended	to	the	result.

Imagine	you	need	something	similar,	but	for	numbers	that	are	greater	than	2.
You	can	copy	filterEven()	and	modify	the	small	part	that	chooses	the	elements
included	in	the	result:

//	ImportanceOfLambdas/GreaterThan2.kt

package	importanceoflambdas

import	atomictest.eq

fun	greaterThan2(nums:	List<Int>):	List<Int>	{

		val	result	=	mutableListOf<Int>()

		for	(i	in	nums)	{



				if	(i	>	2)	{									//	[1]

						result	+=	i

				}

		}

		return	result

}

fun	main()	{

		greaterThan2(listOf(1,	2,	3,	4))	eq

				listOf(3,	4)

}

The	only	notable	difference	between	the	previous	two	examples	is	the	line	of
code	([1]	in	both	cases)	specifying	the	desired	elements.

With	lambdas,	we	can	use	the	same	function	for	both	cases.	The	standard	library
function	filter()	takes	a	predicate	specifying	the	elements	you	want	to
preserve,	and	this	predicate	can	be	a	lambda:

//	ImportanceOfLambdas/Filter.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4)

		val	even	=	list.filter	{	it	%	2	==	0	}

		val	greaterThan2	=	list.filter	{	it	>	2	}

		even	eq	listOf(2,	4)

		greaterThan2	eq	listOf(3,	4)

}

Now	we	have	clear,	concise	code	that	avoids	repetition.	Both	even	and
greaterThan2	use	filter()	and	differ	only	in	the	predicate.	filter()	has	been
heavily	tested,	so	you’re	less	likely	to	introduce	a	bug.

Notice	that	filter()	handles	the	iteration	that	would	otherwise	require
handwritten	code.	Although	managing	the	iteration	yourself	might	not	seem	like
much	effort,	it’s	one	more	error-prone	detail	and	one	more	place	to	make	a
mistake.	Because	they’re	so	“obvious,”	such	mistakes	are	particularly	hard	to
find.

This	is	one	of	the	hallmarks	of	functional	programming,	of	which	map()	and
filter()	are	examples.	Functional	programming	solves	problems	in	small	steps.
The	functions	often	do	things	that	seem	trivial—it’s	not	that	hard	to	write	your
own	code	rather	than	using	map()	and	filter().	However,	once	you	have	a
collection	of	these	small,	debugged	solutions,	you	can	easily	combine	them
without	debugging	at	every	level.	This	allows	you	to	create	more	robust	code,
more	quickly.



You	can	store	a	lambda	in	a	var	or	val.	This	allows	reuse	of	that	lambda’s	logic,
by	passing	it	as	an	argument	to	different	functions:

//	ImportanceOfLambdas/StoringLambda.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4)

		val	isEven	=	{	e:	Int	->	e	%	2	==	0	}

		list.filter(isEven)	eq	listOf(2,	4)

		list.any(isEven)	eq	true

}

isEven	checks	whether	a	number	is	even,	and	this	reference	is	passed	as	an
argument	to	both	filter()	and	any().	The	library	function	any()	checks
whether	there’s	at	least	one	element	in	the	List	satisfying	a	given	predicate.
When	we	define	isEven	we	must	specify	the	parameter	type	because	there	is	no
context	for	the	type	inferencer.

Another	important	quality	of	lambdas	is	the	ability	to	refer	to	elements	outside
their	scope.	When	a	function	“closes	over”	or	“captures”	the	elements	in	its
environment,	we	call	it	a	closure.	Unfortunately,	some	languages	conflate	the
term	“closure”	with	the	idea	of	a	lambda.	The	two	concepts	are	completely
distinct:	you	can	have	lambdas	without	closures,	and	closures	without	lambdas.

When	a	language	supports	closures,	it	“just	works”	the	way	you	expect:

//	ImportanceOfLambdas/Closures.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	5,	7,	10)

		val	divider	=	5

		list.filter	{	it	%	divider	==	0	}	eq

				listOf(5,	10)

}

Here,	the	lambda	“captures”	the	val	divider	that	is	defined	outside	the	lambda.
The	lambda	not	only	reads	captured	elements,	it	can	also	modify	them:

//	ImportanceOfLambdas/Closures2.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	5,	7,	10)

		var	sum	=	0

		val	divider	=	5

		list.filter	{	it	%	divider	==	0	}

				.forEach	{	sum	+=	it	}

		sum	eq	15

}



The	forEach()	library	function	applies	the	specified	action	to	each	element	of
the	collection.

Although	you	can	capture	the	mutable	variable	sum	as	in	Closures2.kt,	you	can
usually	change	your	code	and	avoid	modifying	the	state	of	your	environment:

//	ImportanceOfLambdas/Sum.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	5,	7,	10)

		val	divider	=	5

		list.filter	{	it	%	divider	==	0	}

				.sum()	eq	15

}

sum()	works	on	a	list	of	numbers,	adding	all	the	elements	in	the	list.

An	ordinary	function	can	also	close	over	surrounding	elements:

//	ImportanceOfLambdas/FunctionClosure.kt

package	importanceoflambdas

import	atomictest.eq

var	x	=	100

fun	useX()	{

		x++

}

fun	main()	{

		useX()

		x	eq	101

}

useX()	captures	and	modifies	x	from	its	surroundings.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Operations	on	Collections

An	essential	aspect	of	functional	languages	is	the	ability	to	easily	perform
batch	operations	on	collections	of	objects.

Most	functional	languages	provide	powerful	support	for	working	with
collections,	and	Kotlin	is	no	exception.	You’ve	already	seen	map(),	filter(),
any()	and	forEach().	This	atom	shows	additional	operations	available	for	Lists
and	other	collections.

We	start	by	looking	at	various	ways	to	manufacture	Lists.	Here,	we	initialize
Lists	using	lambdas:

//	OperationsOnCollections/CreatingLists.kt

import	atomictest.eq

fun	main()	{

		//	The	lambda	argument	is	the	element	index:

		val	list1	=	List(10)	{	it	}

		list1	eq	"[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]"

		//	A	list	of	a	single	value:

		val	list2	=	List(10)	{	0	}

		list2	eq	"[0,	0,	0,	0,	0,	0,	0,	0,	0,	0]"

		//	A	list	of	letters:

		val	list3	=	List(10)	{	'a'	+	it	}

		list3	eq	"[a,	b,	c,	d,	e,	f,	g,	h,	i,	j]"

		//	Cycle	through	a	sequence:

		val	list4	=	List(10)	{	list3[it	%	3]	}

		list4	eq	"[a,	b,	c,	a,	b,	c,	a,	b,	c,	a]"

}

This	version	of	the	List	constructor	has	two	parameters:	the	size	of	the	List	and
a	lambda	that	initializes	each	List	element	(the	element	index	is	passed	in	as	the
it	argument).	Remember	that	if	a	lambda	is	the	last	argument,	it	can	be
separated	from	the	argument	list.

MutableLists	can	be	initialized	in	the	same	way.	Here	we	see	the	initialization
lambda	both	inside	the	argument	list	(mutableList1)	and	separated	from	the
argument	list	(mutableList2):



//	OperationsOnCollections/ListInit.kt

import	atomictest.eq

fun	main()	{

		val	mutableList1	=

				MutableList(5,	{	10	*	(it	+	1)	})

		mutableList1	eq	"[10,	20,	30,	40,	50]"

		val	mutableList2	=

				MutableList(5)	{	10	*	(it	+	1)	}

		mutableList2	eq	"[10,	20,	30,	40,	50]"

}

Note	that	List()	and	MutableList()	are	not	constructors,	but	functions.	Their
names	intentionally	begin	with	an	upper-case	letter	to	make	them	look	like
constructors.

Many	collection	functions	take	a	predicate	and	test	it	against	the	elements	of	a
collection,	some	of	which	we’ve	already	seen:

filter()	produces	a	list	containing	all	elements	matching	the	given
predicate.
any()	returns	true	if	at	least	one	element	matches	the	predicate.
all()	checks	whether	all	elements	match	the	predicate.
none()	checks	that	no	elements	match	the	predicate.
find()	and	firstOrNull()	both	return	the	first	element	matching	the
predicate,	or	null	if	no	such	element	was	found.
lastOrNull()	returns	the	last	element	matching	the	predicate,	or	null.
count()	returns	the	number	of	elements	matching	the	predicate.

Here	are	simple	examples	for	each	function:

//	OperationsOnCollections/Predicates.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(-3,	-1,	5,	7,	10)

		list.filter	{	it	>	0	}	eq	listOf(5,	7,	10)

		list.count	{	it	>	0	}	eq	3

		list.find	{	it	>	0	}	eq	5

		list.firstOrNull	{	it	>	0	}	eq	5

		list.lastOrNull	{	it	<	0	}	eq	-1

		list.any	{	it	>	0	}	eq	true

		list.any	{	it	!=	0	}	eq	true

		list.all	{	it	>	0	}	eq	false

		list.all	{	it	!=	0	}	eq	true

		list.none	{	it	>	0	}	eq	false



		list.none	{	it	==	0	}	eq	true

}

filter()	and	count()	apply	the	predicate	against	each	element,	while	any()	or
find()	stop	when	the	first	matching	result	is	found.	For	example,	if	the	first
element	satisfies	the	predicate,	any()	returns	true	right	away,	while	find()
returns	the	first	matching	element.	The	only	time	all	the	elements	are	processed
is	if	the	list	contains	no	elements	matching	the	given	predicate.

filter()	returns	a	group	of	elements	satisfying	the	given	predicate.	Sometimes
you	may	be	interested	in	the	remaining	group—the	elements	that	don’t	satisfy
the	predicate.	filterNot()	produces	this	remaining	group,	but	partition()	can
be	more	useful	because	it	simultaneously	produces	both	lists:

//	OperationsOnCollections/Partition.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(-3,	-1,	5,	7,	10)

		val	isPositive	=	{	i:	Int	->	i	>	0	}

		list.filter(isPositive)	eq	"[5,	7,	10]"

		list.filterNot(isPositive)	eq	"[-3,	-1]"

		val	(pos,	neg)	=	list.partition	{	it	>	0	}

		pos	eq	"[5,	7,	10]"

		neg	eq	"[-3,	-1]"

}

partition()	produces	a	Pair	object	containing	Lists.	Using	Destructuring
Declarations,	you	can	assign	the	elements	of	the	Pair	to	a	parenthesized	group
of	vars	or	vals.	Destructuring	means	defining	multiple	vars	or	vals	and
initializing	them	simultaneously,	from	the	expression	on	the	right	side	of	the
assignment.	Here,	destructuring	is	used	with	a	custom	function:

//	OperationsOnCollections/PairOfLists.kt

package	operationsoncollections

import	atomictest.eq

fun	createPair()	=	Pair(1,	"one")

fun	main()	{

		val	(i,	s)	=	createPair()

		i	eq	1

		s	eq	"one"

}

filterNotNull()	produces	a	new	List	with	the	nulls	removed:

//	OperationsOnCollections/FilterNotNull.kt

import	atomictest.eq



fun	main()	{

		val	list	=	listOf(1,	2,	null)

		list.filterNotNull()	eq	"[1,	2]"

}

In	Lists,	we	saw	functions	such	as	sum()	or	sorted()	applied	to	a	list	of
comparable	elements.	These	functions	can’t	be	called	on	lists	of	non-summable
or	non-comparable	elements,	but	they	have	counterparts	named	sumBy()	and
sortedBy().	You	pass	a	function	(often	a	lambda)	as	an	argument,	which
specifies	the	attribute	to	use	for	the	operation:

//	OperationsOnCollections/ByOperations.kt

package	operationsoncollections

import	atomictest.eq

data	class	Product(

		val	description:	String,

		val	price:	Double

)

fun	main()	{

		val	products	=	listOf(

				Product("bread",	2.0),

				Product("wine",	5.0)

		)

		products.sumByDouble	{	it.price	}	eq	7.0

		products.sortedByDescending	{	it.price	}	eq

				"[Product(description=wine,	price=5.0),"	+

				"	Product(description=bread,	price=2.0)]"

		products.minByOrNull	{	it.price	}	eq

				Product("bread",	2.0)

}

Note	that	we	have	two	functions	sumBy()	and	sumByDouble()	to	sum	integer	and
double	values,	respectively.	sorted()	and	sortedBy()	sort	the	collection	in
ascending	order,	while	sortedDescending()	and	sortedByDescending()	sort
the	collection	in	descending	order.

minByOrNull	returns	a	minimum	value	based	on	a	given	criteria	or	null	if	the
list	is	empty.

take()	and	drop()	produce	or	remove	(respectively)	the	first	element,	while
takeLast()	and	dropLast()	produce	or	remove	the	last	element.	These	have
counterparts	that	accept	a	predicate	specifying	the	elements	to	take	or	drop:

//	OperationsOnCollections/TakeOrDrop.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf('a',	'b',	'c',	'X',	'Z')



		list.takeLast(3)	eq	"[c,	X,	Z]"

		list.takeLastWhile	{	it.isUpperCase()	}	eq

				"[X,	Z]"

		list.drop(1)	eq	"[b,	c,	X,	Z]"

		list.dropWhile	{	it.isLowerCase()	}	eq

				"[X,	Z]"

}

Operations	like	those	you’ve	seen	for	Lists	are	also	available	for	Sets:

//	OperationsOnCollections/SetOperations.kt

import	atomictest.eq

fun	main()	{

		val	set	=	setOf("a",	"ab",	"ac")

		set.maxByOrNull	{	it.length	}?.length	eq	2

		set.filter	{

				it.contains('b')

		}	eq	listOf("ab")

		set.map	{	it.length	}	eq	listOf(1,	2,	2)

}

maxByOrNull()	returns	null	if	a	collection	is	empty,	so	its	result	is	nullable.

Note	that	filter()	and	map(),	when	applied	to	a	Set,	return	their	results	in	a
List.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Member	References

You	can	pass	a	member	reference	as	a	function	argument.

Member	references—for	functions,	properties	and	constructors—can	replace
trivial	lambdas	that	simply	call	the	corresponding	function,	property	or
constructor.

A	member	reference	uses	a	double	colon	to	separate	the	class	name	from	the
function	or	property.	Here,	Message::isRead	is	a	member	reference:

//	MemberReferences/PropertyReference.kt

package	memberreferences1

import	atomictest.eq

data	class	Message(

		val	sender:	String,

		val	text:	String,

		val	isRead:	Boolean

)

fun	main()	{

		val	messages	=	listOf(

				Message("Kitty",	"Hey!",	true),

				Message("Kitty",	"Where	are	you?",	false))

		val	unread	=

				messages.filterNot(Message::isRead)

		unread.size	eq	1

		unread.single().text	eq	"Where	are	you?"

}

To	filter	for	unread	messages,	we	use	the	library	function	filterNot(),	which
takes	a	predicate.	In	our	case,	the	predicate	indicates	whether	a	message	is
already	read.	We	could	pass	a	lambda,	but	instead	we	pass	the	property	reference
Message::isRead.

Property	references	are	useful	when	specifying	a	non-trivial	sort	order:

//	MemberReferences/SortWith.kt

import	memberreferences1.Message

import	atomictest.eq

fun	main()	{

		val	messages	=	listOf(

				Message("Kitty",	"Hey!",	true),

				Message("Kitty",	"Where	are	you?",	false),



				Message("Boss",	"Meeting	today",	false))

		messages.sortedWith(compareBy(

				Message::isRead,	Message::sender))	eq

				listOf(

						//	First	unread,	sorted	by	sender:

						Message("Boss",	"Meeting	today",	false),

						Message("Kitty",

								"Where	are	you?",	false),

						//	Then	read,	also	sorted	by	sender:

						Message("Kitty",	"Hey!",	true))

}

The	library	function	sortedWith()	sorts	a	list	using	a	comparator,	which	is	an
object	used	to	compare	two	elements.	The	library	function	compareBy()	builds	a
comparator	based	on	its	parameters,	which	are	a	list	of	predicates.	Using
compareBy()	with	a	single	argument	is	equivalent	to	calling	sortedBy().

Function	References
Suppose	you	want	to	check	whether	a	List	contains	any	important	messages,	not
just	unread	messages.	You	might	have	a	number	of	complicated	criteria	to	decide
what	“important”	means.	You	can	put	this	logic	into	a	lambda,	but	that	lambda
could	easily	become	large	and	complex.	The	code	is	more	understandable	if	you
extract	it	into	a	separate	function.	In	Kotlin	you	can’t	pass	a	function	where	a
function	type	is	expected,	but	you	can	pass	a	reference	to	that	function:

//	MemberReferences/FunctionReference.kt

package	memberreferences2

import	atomictest.eq

data	class	Message(

		val	sender:	String,

		val	text:	String,

		val	isRead:	Boolean,

		val	attachments:	List<Attachment>

)

data	class	Attachment(

		val	type:	String,

		val	name:	String

)

fun	Message.isImportant():	Boolean	=

		text.contains("Salary	increase")	||

				attachments.any	{

						it.type	==	"image"	&&

								it.name.contains("cat")

				}

fun	main()	{

		val	messages	=	listOf(Message(

				"Boss",	"Let's	discuss	goals	"	+

				"for	next	year",	false,

				listOf(Attachment("image",	"cute	cats"))))



		messages.any(Message::isImportant)	eq	true

}

This	new	Message	class	adds	an	attachments	property,	and	the	extension
function	Message.isImportant()	uses	this	information.	In	the	call	to
messages.any(),	we	create	a	reference	to	an	extension	function—references	are
not	limited	to	member	functions.

If	you	have	a	top-level	function	taking	Message	as	its	only	parameter,	you	can
pass	it	as	a	reference.	When	you	create	a	reference	to	a	top-level	function,	there’s
no	class	name,	so	it’s	written	::function:

//	MemberReferences/TopLevelFunctionRef.kt

package	memberreferences2

import	atomictest.eq

fun	ignore(message:	Message)	=

		!message.isImportant()	&&

				message.sender	in	setOf("Boss",	"Mom")

fun	main()	{

		val	text	=	"Let's	discuss	goals	"	+

				"for	the	next	year"

		val	msgs	=	listOf(

				Message("Boss",	text,	false,	listOf()),

				Message("Boss",	text,	false,	listOf(

						Attachment("image",	"cute	cats"))))

		msgs.filter(::ignore).size	eq	1

		msgs.filterNot(::ignore).size	eq	1

}

Constructor	References
You	can	create	a	reference	to	a	constructor	using	the	class	name.

Here,	names.mapIndexed()	takes	the	constructor	reference	::Student:

//	MemberReferences/ConstructorReference.kt

package	memberreferences3

import	atomictest.eq

data	class	Student(

		val	id:	Int,

		val	name:	String

)

fun	main()	{

		val	names	=	listOf("Alice",	"Bob")

		val	students	=

				names.mapIndexed	{	index,	name	->

						Student(index,	name)

				}

		students	eq	listOf(Student(0,	"Alice"),

				Student(1,	"Bob"))



		names.mapIndexed(::Student)	eq	students

}

mapIndexed()	was	introduced	in	Lambdas.	It	turns	each	element	in	names	into
the	index	of	that	element	along	with	the	element.	In	the	definition	of	students,
these	are	explicitly	mapped	into	the	constructor,	but	the	identical	effect	is
achieved	with	names.mapIndexed(::Student).	Thus,	function	and	constructor
references	can	eliminate	specifying	a	long	list	of	parameters	that	are	simply
passed	into	a	lambda.	Function	and	constructor	references	are	often	more
readable	than	lambdas.

Extension	Function	References
To	produce	a	reference	to	an	extension	function,	prefix	the	reference	with	the
name	of	the	extended	type:

//	MemberReferences/ExtensionReference.kt

package	memberreferences

import	atomictest.eq

fun	Int.times47()	=	times(47)

class	Frog

fun	Frog.speak()	=	"Ribbit!"

fun	goInt(n:	Int,	g:	(Int)	->	Int)	=	g(n)

fun	goFrog(frog:	Frog,	g:	(Frog)	->	String)	=

		g(frog)

fun	main()	{

		goInt(12,	Int::times47)	eq	564

		goFrog(Frog(),	Frog::speak)	eq	"Ribbit!"

}

In	goInt(),	g	is	a	function	that	expects	an	Int	argument	and	produces	an	Int.	In
goFrog(),	g	expects	a	Frog	and	produces	a	String.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Higher-Order	Functions

A	language	supports	higher-order	functions	if	its	functions	can	accept	other
functions	as	arguments	and	produce	functions	as	return	values.

Higher-order	functions	are	an	essential	part	of	functional	programming
languages.	In	previous	atoms,	we’ve	seen	higher-order	functions	such	as
filter(),	map(),	and	any().

You	can	store	a	lambda	in	a	reference.	Let’s	look	at	the	type	of	this	storage:

//	HigherOrderFunctions/IsPlus.kt

package	higherorderfunctions

import	atomictest.eq

val	isPlus:	(Int)	->	Boolean	=	{	it	>	0	}

fun	main()	{

		listOf(1,	2,	-3).any(isPlus)	eq	true

}

(Int)	->	Boolean	is	the	function	type:	it	starts	with	parentheses	surrounding
zero	or	more	parameter	types,	then	an	arrow	(->),	followed	by	the	return	type:

(Arg1Type,	Arg2Type...	ArgNType)	->	ReturnType

The	syntax	for	calling	a	function	through	a	reference	is	identical	to	an	ordinary
function	call:

//	HigherOrderFunctions/CallingReference.kt

package	higherorderfunctions

import	atomictest.eq

val	helloWorld:	()	->	String	=

		{	"Hello,	world!"	}

val	sum:	(Int,	Int)	->	Int	=

		{	x,	y	->	x	+	y	}

fun	main()	{

		helloWorld()	eq	"Hello,	world!"

		sum(1,	2)	eq	3

}



When	a	function	accepts	a	function	parameter,	you	can	either	pass	it	a	function
reference	or	a	lambda.	Consider	how	you	might	define	any()	from	the	standard
library:

//	HigherOrderFunctions/Any.kt

package	higherorderfunctions

import	atomictest.eq

fun	<T>	List<T>.any(																				//	[1]

		predicate:	(T)	->	Boolean													//	[2]

):	Boolean	{

		for	(element	in	this)	{

				if	(predicate(element))													//	[3]

						return	true

		}

		return	false

}

fun	main()	{

		val	ints	=	listOf(1,	2,	-3)

		ints.any	{	it	>	0	}	eq	true											//	[4]

		val	strings	=	listOf("abc",	"	")

		strings.any	{	it.isBlank()	}	eq	true		//	[5]

		strings.any(String::isNotBlank)	eq				//	[6]

				true

}

[1]	any()	should	be	usable	with	Lists	of	different	types	so	we	define	it	as
an	extension	to	the	generic	List<T>.
[2]	The	predicate	function	is	callable	with	a	parameter	of	type	T	so	we	can
apply	it	to	the	List	elements.
[3]	Applying	predicate()	tells	whether	that	element	fits	our	criteria.
The	type	of	the	lambda	differs:	it’s	Int	in	[4]	and	String	in	[5].
[6]	A	member	reference	is	another	way	to	pass	a	function	reference.

repeat()	from	the	standard	library	takes	a	function	as	its	second	parameter.	It
repeats	an	action	an	Int	number	of	times:

//	HigherOrderFunctions/RepeatByInt.kt

import	atomictest.*

fun	main()	{

		repeat(4)	{	trace("hi!")	}

		trace	eq	"hi!	hi!	hi!	hi!"

}

Consider	how	repeat()	might	be	defined:

//	HigherOrderFunctions/Repeat.kt

package	higherorderfunctions

import	atomictest.*



fun	repeat(

		times:	Int,

		action:	(Int)	->	Unit											//	[1]

)	{

		for	(index	in	0	until	times)	{

				action(index)																	//	[2]

		}

}

fun	main()	{

		repeat(3)	{	trace("#$it")	}					//	[3]

		trace	eq	"#0	#1	#2"

}

[1]	repeat()	takes	a	parameter	action	of	the	function	type	(Int)	->	Unit.
[2]	When	action()	is	called,	it	is	passed	the	current	repetition	index.
[3]	When	calling	repeat(),	you	access	the	repetition	index	using	it	inside
the	lambda.

A	function	return	type	can	be	nullable:

//	HigherOrderFunctions/NullableReturn.kt

import	atomictest.eq

fun	main()	{

		val	transform:	(String)	->	Int?	=

				{	s:	String	->	s.toIntOrNull()	}

		transform("112")	eq	112

		transform("abc")	eq	null

		val	x	=	listOf("112",	"abc")

		x.mapNotNull(transform)	eq	"[112]"

		x.mapNotNull	{	it.toIntOrNull()	}	eq	"[112]"

}

toIntOrNull()	might	return	null,	so	transform()	accepts	a	String	and	returns
a	nullable	Int?.	mapNotNull()	converts	each	element	in	a	List	into	a	nullable
value	and	removes	all	nulls	from	the	result.	It	has	the	same	effect	as	first	calling
map(),	then	applying	filterNotNull()	to	the	resulting	list.

Note	the	difference	between	making	the	return	type	nullable	versus	making	the
whole	function	type	nullable:

//	HigherOrderFunctions/NullableFunction.kt

import	atomictest.eq

fun	main()	{

		val	returnTypeNullable:	(String)	->	Int?	=

				{	null	}

		val	mightBeNull:	((String)	->	Int)?	=	null

		returnTypeNullable("abc")	eq	null

		//	Doesn't	compile	without	a	null	check:

		//	mightBeNull("abc")

		if	(mightBeNull	!=	null)	{

				mightBeNull("abc")



		}

}

Before	calling	the	function	stored	in	mightBeNull,	we	must	ensure	that	the
function	reference	itself	is	not	null.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Manipulating	Lists

Zipping	and	flattening	are	two	common	operations	that	manipulate	Lists.

Zipping
zip()	combines	two	Lists	by	mimicking	the	behavior	of	the	zipper	on	your
jacket,	pairing	adjacent	List	elements:

//	ManipulatingLists/Zipper.kt

import	atomictest.eq

fun	main()	{

		val	left	=	listOf("a",	"b",	"c",	"d")

		val	right	=	listOf("q",	"r",	"s",	"t")

		left.zip(right)	eq																	//	[1]

				"[(a,	q),	(b,	r),	(c,	s),	(d,	t)]"

		left.zip(0..4)	eq																		//	[2]

				"[(a,	0),	(b,	1),	(c,	2),	(d,	3)]"

		(10..100).zip(right)	eq												//	[3]

				"[(10,	q),	(11,	r),	(12,	s),	(13,	t)]"

}

[1]	Zipping	left	with	right	results	in	a	List	of	Pairs,	combining	each
element	in	left	with	its	corresponding	element	in	right.
[2]	You	can	also	zip()	a	List	with	a	range.
[3]	The	range	10..100	is	much	larger	than	right,	but	the	zipping	process
stops	when	one	sequence	runs	out.

zip()	can	also	perform	an	operation	on	each	Pair	it	creates:

//	ManipulatingLists/ZipAndTransform.kt

package	manipulatinglists

import	atomictest.eq

data	class	Person(

		val	name:	String,

		val	id:	Int

)

fun	main()	{

		val	names	=	listOf("Bob",	"Jill",	"Jim")

		val	ids	=	listOf(1731,	9274,	8378)

		names.zip(ids)	{	name,	id	->



				Person(name,	id)

		}	eq	"[Person(name=Bob,	id=1731),	"	+

				"Person(name=Jill,	id=9274),	"	+

				"Person(name=Jim,	id=8378)]"

}

names.zip(ids)	{	...	}	produces	a	sequence	of	name-id	Pairs,	and	applies
the	lambda	to	each	Pair.	The	result	is	a	List	of	initialized	Person	objects.

To	zip	two	adjacent	elements	from	a	single	List,	use	zipWithNext():

//	ManipulatingLists/ZippingWithNext.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf('a',	'b',	'c',	'd')

		list.zipWithNext()	eq	listOf(

				Pair('a',	'b'),

				Pair('b',	'c'),

				Pair('c',	'd'))

		list.zipWithNext	{	a,	b	->	"$a$b"	}	eq

				"[ab,	bc,	cd]"

}

The	second	call	to	zipWithNext()	performs	an	additional	operation	after
zipping.

Flattening
flatten()	takes	a	List	containing	elements	that	are	themselves	Lists—a	List
of	Lists—and	flattens	it	into	a	List	of	single	elements:

//	ManipulatingLists/Flatten.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(

				listOf(1,	2),

				listOf(4,	5),

				listOf(7,	8),

		)

		list.flatten()	eq	"[1,	2,	4,	5,	7,	8]"

}

flatten()	helps	us	understand	another	important	operation	on	collections:
flatMap().	Let’s	produce	all	possible	Pairs	of	a	range	of	Ints:

//	ManipulatingLists/FlattenAndFlatMap.kt

import	atomictest.eq

fun	main()	{



		val	intRange	=	1..3

		intRange.map	{	a	->										//	[1]

				intRange.map	{	b	->	a	to	b	}

		}	eq	"["	+

				"[(1,	1),	(1,	2),	(1,	3)],	"	+

				"[(2,	1),	(2,	2),	(2,	3)],	"	+

				"[(3,	1),	(3,	2),	(3,	3)]"	+

				"]"

		intRange.map	{	a	->										//	[2]

				intRange.map	{	b	->	a	to	b	}

		}.flatten()	eq	"["	+

				"(1,	1),	(1,	2),	(1,	3),	"	+

				"(2,	1),	(2,	2),	(2,	3),	"	+

				"(3,	1),	(3,	2),	(3,	3)"	+

				"]"

		intRange.flatMap	{	a	->						//	[3]

				intRange.map	{	b	->	a	to	b	}

		}	eq	"["	+

				"(1,	1),	(1,	2),	(1,	3),	"	+

				"(2,	1),	(2,	2),	(2,	3),	"	+

				"(3,	1),	(3,	2),	(3,	3)"	+

				"]"

}

The	lambda	in	each	case	is	identical:	every	intRange	element	is	combined	with
every	intRange	element	to	produce	all	possible	a	to	b	Pairs.	But	in	[1],	map()
helpfully	preserves	the	extra	information	that	we	have	produced	three	Lists,	one
for	each	element	in	intRange.	There	are	situations	where	this	extra	information
is	essential,	but	here	we	don’t	want	it—we	just	need	a	single	flat	List	of	all
combinations,	with	no	additional	structure.

There	are	two	options.	[2]	shows	the	application	of	the	flatten()	function	to
remove	this	additional	structure	and	flatten	the	result	into	a	single	List,	which	is
an	acceptable	approach.	However,	this	is	such	a	common	task	that	Kotlin
provides	a	combined	operation	called	flatMap(),	which	performs	both	map()
and	flatten()	with	a	single	call.	[3]	shows	flatMap()	in	action.	You’ll	find
flatMap()	in	most	languages	that	support	functional	programming.

Here’s	a	second	example	of	flatMap():

//	ManipulatingLists/WhyFlatMap.kt

package	manipulatinglists

import	atomictest.eq

class	Book(

		val	title:	String,

		val	authors:	List<String>

)

fun	main()	{

		val	books	=	listOf(



				Book("1984",	listOf("George	Orwell")),

				Book("Ulysses",	listOf("James	Joyce"))

		)

		books.map	{	it.authors	}.flatten()	eq

				listOf("George	Orwell",	"James	Joyce")

		books.flatMap	{	it.authors	}	eq

				listOf("George	Orwell",	"James	Joyce")

}

We’d	like	a	List	of	authors.	map()	produces	a	List	of	List	of	authors,	which
isn’t	very	convenient.	flatten()	takes	that	and	produces	a	simple	List.
flatMap()	produces	the	same	results	in	a	single	step.

Here,	we	use	map()	and	flatMap()	to	combine	the	enums	Suit	and	Rank,
producing	a	deck	of	Cards:

//	ManipulatingLists/PlayingCards.kt

package	manipulatinglists

import	kotlin.random.Random

import	atomictest.*

enum	class	Suit	{

		Spade,	Club,	Heart,	Diamond

}

enum	class	Rank(val	faceValue:	Int)	{

		Ace(1),	Two(2),	Three(3),	Four(4),	Five(5),

		Six(6),	Seven(7),	Eight(8),	Nine(9),

		Ten(10),	Jack(10),	Queen(10),	King(10)

}

class	Card(val	rank:	Rank,	val	suit:	Suit)	{

		override	fun	toString()	=

				"$rank	of	${suit}s"

}

val	deck:	List<Card>	=

		Suit.values().flatMap	{	suit	->

				Rank.values().map	{	rank	->

						Card(rank,	suit)

				}

		}

fun	main()	{

		val	rand	=	Random(26)

		repeat(7)	{

				trace("'${deck.random(rand)}'")

		}

		trace	eq	"""

				'Jack	of	Hearts'	'Four	of	Hearts'

				'Five	of	Clubs'	'Seven	of	Clubs'

				'Jack	of	Diamonds'	'Ten	of	Spades'

				'Seven	of	Spades'

		"""

}



In	the	initialization	of	deck,	the	inner	Rank.values().map	produces	four	Lists,
one	for	each	Suit,	so	we	use	flatMap()	on	the	outer	loop	to	produce	a
List<Card>	for	deck.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Building	Maps

Maps	are	extremely	useful	programming	tools,	and	there	are	numerous	ways
to	construct	them.

To	create	a	repeatable	set	of	data,	we	use	the	technique	shown	in	Manipulating
Lists,	where	two	Lists	are	zipped	and	the	result	is	used	in	a	lambda	to	call	a
constructor,	producing	a	List<Person>:

//	BuildingMaps/People.kt

package	buildingmaps

data	class	Person(

		val	name:	String,

		val	age:	Int

)

val	names	=	listOf("Alice",	"Arthricia",

		"Bob",	"Bill",	"Birdperson",	"Charlie",

		"Crocubot",	"Franz",	"Revolio")

val	ages	=	listOf(21,	15,	25,	25,	42,	21,

		42,	21,	33)

fun	people():	List<Person>	=

		names.zip(ages)	{	name,	age	->

				Person(name,	age)

		}

A	Map	uses	keys	to	provide	fast	access	to	its	values.	By	building	a	Map	with	age
as	the	key,	we	can	quickly	look	up	groups	of	people	by	age.	The	library	function
groupBy()	is	one	way	to	create	such	a	Map:

//	BuildingMaps/GroupBy.kt

import	buildingmaps.*

import	atomictest.eq

fun	main()	{

		val	map:	Map<Int,	List<Person>>	=

				people().groupBy(Person::age)

		map[15]	eq	listOf(Person("Arthricia",	15))

		map[21]	eq	listOf(

				Person("Alice",	21),

				Person("Charlie",	21),

				Person("Franz",	21))

		map[22]	eq	null

		map[25]	eq	listOf(

				Person("Bob",	25),

				Person("Bill",	25))



		map[33]	eq	listOf(Person("Revolio",	33))

		map[42]	eq	listOf(

				Person("Birdperson",	42),

				Person("Crocubot",	42))

}

groupBy()’s	parameter	produces	a	Map	where	each	key	connects	to	a	List	of
elements.	Here,	all	people	of	the	same	age	are	selected	by	the	age	key.

You	can	produce	the	same	groups	using	the	filter()	function,	but	groupBy()	is
preferable	because	it	only	performs	the	grouping	once.	With	filter()	you	must
repeat	the	grouping	for	each	new	key:

//	BuildingMaps/GroupByVsFilter.kt

import	buildingmaps.*

import	atomictest.eq

fun	main()	{

		val	groups	=

				people().groupBy	{	it.name.first()	}

		//	groupBy()	produces	map-speed	access:

		groups['A']	eq	listOf(Person("Alice",	21),

				Person("Arthricia",	15))

		groups['Z']	eq	null

		//	Must	repeat	filter()	for	each	character:

		people().filter	{

				it.name.first()	==	'A'

		}	eq	listOf(Person("Alice",	21),

				Person("Arthricia",	15))

		people().filter	{

				it.name.first()	==	'F'

		}	eq	listOf(Person("Franz",	21))

		people().partition	{

				it.name.first()	==	'A'

		}	eq	Pair(

				listOf(Person("Alice",	21),

						Person("Arthricia",	15)),

				listOf(Person("Bob",	25),

						Person("Bill",	25),

						Person("Birdperson",	42),

						Person("Charlie",	21),

						Person("Crocubot",	42),

						Person("Franz",	21),

						Person("Revolio",	33)))

}

Here,	groupBy()	groups	people()	by	their	first	character,	selected	by	first().
We	can	also	use	filter()	to	produce	the	same	result	by	repeating	the	lambda
code	for	each	character.

If	you	only	need	two	groups,	the	partition()	function	is	more	direct	because	it
divides	the	contents	into	two	lists	based	on	a	predicate.	groupBy()	is	appropriate



when	you	need	more	than	two	resulting	groups.

associateWith()	allows	you	to	take	a	list	of	keys	and	build	a	Map	by	associating
each	of	these	keys	with	a	value	created	by	its	parameter	(here,	the	lambda):

//	BuildingMaps/AssociateWith.kt

import	buildingmaps.*

import	atomictest.eq

fun	main()	{

		val	map:	Map<Person,	String>	=

				people().associateWith	{	it.name	}

		map	eq	mapOf(

				Person("Alice",	21)	to	"Alice",

				Person("Arthricia",	15)	to	"Arthricia",

				Person("Bob",	25)	to	"Bob",

				Person("Bill",	25)	to	"Bill",

				Person("Birdperson",	42)	to	"Birdperson",

				Person("Charlie",	21)	to	"Charlie",

				Person("Crocubot",	42)	to	"Crocubot",

				Person("Franz",	21)	to	"Franz",

				Person("Revolio",	33)	to	"Revolio")

}

associateBy()	reverses	the	order	of	association	produced	by	associateWith()
—the	selector	(the	lambda	in	the	following	example)	becomes	the	key:

//	BuildingMaps/AssociateBy.kt

import	buildingmaps.*

import	atomictest.eq

fun	main()	{

		val	map:	Map<String,	Person>	=

				people().associateBy	{	it.name	}

		map	eq	mapOf(

				"Alice"	to	Person("Alice",	21),

				"Arthricia"	to	Person("Arthricia",	15),

				"Bob"	to	Person("Bob",	25),

				"Bill"	to	Person("Bill",	25),

				"Birdperson"	to	Person("Birdperson",	42),

				"Charlie"	to	Person("Charlie",	21),

				"Crocubot"	to	Person("Crocubot",	42),

				"Franz"	to	Person("Franz",	21),

				"Revolio"	to	Person("Revolio",	33))

}

associateBy()	must	be	used	with	a	unique	selection	key	and	returns	a	Map	that
pairs	each	unique	key	to	the	single	element	selected	by	that	key.

//	BuildingMaps/AssociateByUnique.kt

import	buildingmaps.*

import	atomictest.eq

fun	main()	{

		//	associateBy()	fails	when	the	key	isn't

		//	unique	--	values	disappear:



		val	ages	=	people().associateBy	{	it.age	}

		ages	eq	mapOf(

				21	to	Person("Franz",	21),

				15	to	Person("Arthricia",	15),

				25	to	Person("Bill",	25),

				42	to	Person("Crocubot",	42),

				33	to	Person("Revolio",	33))

}

If	multiple	values	are	selected	by	the	predicate,	as	in	ages,	only	the	last	one
appears	in	the	generated	Map.

getOrElse()	tries	to	look	up	a	value	in	a	Map.	Its	associated	lambda	computes	a
default	value	when	a	key	is	not	present.	Because	it’s	a	lambda,	we	compute	the
default	key	only	when	necessary:

//	BuildingMaps/GetOrPut.kt

import	atomictest.eq

fun	main()	{

		val	map	=	mapOf(1	to	"one",	2	to	"two")

		map.getOrElse(0)	{	"zero"	}	eq	"zero"

		val	mutableMap	=	map.toMutableMap()

		mutableMap.getOrPut(0)	{	"zero"	}	eq

				"zero"

		mutableMap	eq	"{1=one,	2=two,	0=zero}"

}

getOrPut()	works	on	a	MutableMap.	If	a	key	is	present	it	simply	returns	the
associated	value.	If	the	key	isn’t	found,	it	computes	the	value,	puts	it	into	the
map	and	returns	that	value.

Many	Map	operations	duplicate	ones	in	List.	For	example,	you	can	filter()	or
map()	the	contents	of	a	Map.	You	can	filter	keys	and	values	separately:

//	BuildingMaps/FilterMap.kt

import	atomictest.eq

fun	main()	{

		val	map	=	mapOf(1	to	"one",

				2	to	"two",	3	to	"three",	4	to	"four")

		map.filterKeys	{	it	%	2	==	1	}	eq

				"{1=one,	3=three}"

		map.filterValues	{	it.contains('o')	}	eq

				"{1=one,	2=two,	4=four}"

		map.filter	{	entry	->

				entry.key	%	2	==	1	&&

						entry.value.contains('o')



		}	eq	"{1=one}"

}

All	three	functions	filter(),	filterKeys()	and	filterValues()	produce	a
new	map	containing	only	the	elements	that	satisfy	the	predicate.	filterKeys()
applies	its	predicate	to	the	keys,	and	filterValues()	applies	its	predicate	to	the
values.

Applying	Operations	to	Maps
To	map()	a	Map	sounds	like	a	tautology,	like	saying	“salt	is	salty.”	The	word	map
represents	two	distinct	ideas:

Transforming	a	collection
The	key-value	data	structure

In	many	programming	languages,	the	word	map	is	used	for	both	concepts.	For
clarity,	we	say	transform	a	map	when	applying	map()	to	a	Map.

Here	we	demonstrate	map(),	mapKeys()	and	mapValues():

//	BuildingMaps/TransformingMap.kt

import	atomictest.eq

fun	main()	{

		val	even	=	mapOf(2	to	"two",	4	to	"four")

		even.map	{																												//	[1]

				"${it.key}=${it.value}"

		}	eq	listOf("2=two",	"4=four")

		even.map	{	(key,	value)	->												//	[2]

				"$key=$value"

		}	eq	listOf("2=two",	"4=four")

		even.mapKeys	{	(num,	_)	->	-num	}					//	[3]

				.mapValues	{	(_,	str)	->	"minus	$str"	}	eq

				mapOf(-2	to	"minus	two",

						-4	to	"minus	four")

		even.map	{	(key,	value)	->

				-key	to	"minus	$value"

		}.toMap()	eq	mapOf(-2	to	"minus	two",	//	[4]

				-4	to	"minus	four")

}

[1]	Here,	map()	takes	a	predicate	with	a	Map.Entry	argument.	We	access	its
contents	as	it.key	and	it.value.
[2]	You	can	also	use	a	destructuring	declaration	to	place	the	entry	contents
into	key	and	value.



[3]	If	a	parameter	isn’t	used,	an	underscore	(_)	avoids	compiler	complaints.
mapKeys()	and	mapValues()	return	a	new	map,	with	all	keys	or	values
transformed	accordingly.
[4],	map()	returns	a	list	of	pairs,	so	to	produce	a	Map	we	use	the	explicit
conversion	toMap().

Functions	like	any()	and	all()	can	also	be	applied	to	Maps:

//	BuildingMaps/SimilarOperation.kt

import	atomictest.eq

fun	main()	{

		val	map	=	mapOf(1	to	"one",

				-2	to	"minus	two")

		map.any	{	(key,	_)	->	key	<	0	}	eq	true

		map.all	{	(key,	_)	->	key	<	0	}	eq	false

		map.maxByOrNull	{	it.key	}?.value	eq	"one"

}

any()	checks	whether	any	of	the	entries	in	a	Map	satisfy	the	given	predicate,
while	all()	is	true	only	if	all	entries	in	the	Map	satisfy	the	predicate.

maxByOrNull()	finds	the	maximum	entry	based	on	the	given	criteria.	There	may
not	be	a	maximum	entry,	so	the	result	is	nullable.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Sequences

A	Kotlin	Sequence	is	like	a	List,	but	you	can	only	iterate	through	a
Sequence—you	cannot	index	into	a	Sequence.	This	restriction	produces
very	efficient	chained	operations.

Kotlin	Sequences	are	termed	streams	in	other	functional	languages.	Kotlin	had
to	choose	a	different	name	to	maintain	interoperability	with	the	Java	8	Stream
library.

Operations	on	Lists	are	performed	eagerly—they	always	happen	right	away.
When	chaining	List	operations,	the	first	result	must	be	produced	before	starting
the	next	operation.	Here,	each	filter(),	map()	and	any()	operation	is	applied	to
every	element	in	list:

//	Sequences/EagerEvaluation.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4)

		list.filter	{	it	%	2	==	0	}

				.map	{	it	*	it	}

				.any	{	it	<	10	}	eq	true

		//	Equivalent	to:

		val	mid1	=	list.filter	{	it	%	2	==	0	}

		mid1	eq	listOf(2,	4)

		val	mid2	=	mid1.map	{	it	*	it	}

		mid2	eq	listOf(4,	16)

		mid2.any	{	it	<	10	}	eq	true

}

Eager	evaluation	is	intuitive	and	straightforward,	but	can	be	suboptimal.	In
EagerEvaluation.kt,	it	would	make	more	sense	to	stop	after	encountering	the
first	element	that	satisfies	the	any().	For	a	long	sequence,	this	optimization
might	be	much	faster	than	evaluating	every	element	and	then	searching	for	a
single	match.

Eager	evaluation	is	sometimes	called	horizontal	evaluation:



Horizontal	Evaluation

The	first	line	contains	the	initial	list	contents.	Each	following	line	shows	the
results	from	the	previous	operation.	Before	the	next	operation	is	performed,	all
elements	on	the	current	horizontal	level	are	processed.

The	alternative	to	eager	evaluation	is	lazy	evaluation:	a	result	is	computed	only
when	needed.	Performing	lazy	operations	on	sequences	is	sometimes	called
vertical	evaluation:

Vertical	Evaluation

With	lazy	evaluation,	an	operation	is	performed	on	an	element	only	when	that
element’s	associated	result	is	requested.	If	the	final	result	of	a	calculation	is
found	before	processing	the	last	element,	no	further	elements	are	processed.

Converting	Lists	to	Sequences	using	asSequence()	enables	lazy	evaluation.	All
List	operations	except	indexing	are	also	available	for	Sequences,	so	you	can



usually	make	this	single	change	and	gain	the	benefits	of	lazy	evaluation.

The	following	example	shows	the	above	diagrams	converted	into	code.	We
perform	the	identical	chain	of	operations,	first	on	a	List,	then	on	a	Sequence.
The	output	shows	where	each	operation	is	called:

//	Sequences/EagerVsLazyEvaluation.kt

package	sequences

import	atomictest.*

fun	Int.isEven():	Boolean	{

		trace("$this.isEven()")

		return	this	%	2	==	0

}

fun	Int.square():	Int	{

		trace("$this.square()")

		return	this	*	this

}

fun	Int.lessThanTen():	Boolean	{

		trace("$this.lessThanTen()")

		return	this	<	10

}

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4)

		trace(">>>	List:")

		trace(

				list

						.filter(Int::isEven)

						.map(Int::square)

						.any(Int::lessThanTen)

		)

		trace(">>>	Sequence:")

		trace(

				list.asSequence()

						.filter(Int::isEven)

						.map(Int::square)

						.any(Int::lessThanTen)

		)

		trace	eq	"""

				>>>	List:

				1.isEven()

				2.isEven()

				3.isEven()

				4.isEven()

				2.square()

				4.square()

				4.lessThanTen()

				true

				>>>	Sequence:

				1.isEven()

				2.isEven()

				2.square()

				4.lessThanTen()

				true

		"""

}



The	only	difference	between	the	two	approaches	is	the	addition	of	the
asSequence()	call,	but	more	elements	are	processed	for	the	List	code	than	the
Sequence	code.

Calling	either	filter()	or	map()	on	a	Sequence	produces	another	Sequence.
Nothing	happens	until	you	ask	for	a	result	from	a	calculation.	Instead,	the	new
Sequence	stores	all	information	about	postponed	operations	and	will	perform
those	operations	only	when	needed:

//	Sequences/NoComputationYet.kt

import	atomictest.eq

import	sequences.*

fun	main()	{

		val	r	=	listOf(1,	2,	3,	4)

				.asSequence()

				.filter(Int::isEven)

				.map(Int::square)

		r.toString().substringBefore("@")	eq

				"kotlin.sequences.TransformingSequence"

}

Converting	r	to	a	String	does	not	produce	the	results	we	want,	but	just	the
identifier	for	the	object	(including	the	@	address	of	the	object	in	memory,	which
we	remove	using	the	standard	library	substringBefore()).	The
TransformingSequence	just	holds	the	operations	but	does	not	perform	them.

There	are	two	categories	of	Sequence	operations:	intermediate	and	terminal.
Intermediate	operations	return	another	Sequence	as	a	result.	filter()	and	map()
are	intermediate	operations.	Terminal	operations	return	a	non-Sequence.	To	do
this,	a	terminal	operation	executes	all	stored	computations.	In	the	previous
examples,	any()	is	a	terminal	operation	because	it	takes	a	Sequence	and	returns
a	Boolean.	In	the	following	example,	toList()	is	terminal	because	it	converts
the	Sequence	to	a	List,	running	all	stored	operations	in	the	process:

//	Sequences/TerminalOperations.kt

import	sequences.*

import	atomictest.*

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4)

		trace(list.asSequence()

				.filter(Int::isEven)

				.map(Int::square)

				.toList())

		trace	eq	"""

				1.isEven()

				2.isEven()

				2.square()

				3.isEven()



				4.isEven()

				4.square()

				[4,	16]

		"""

}

Because	a	Sequence	stores	the	operations,	it	can	call	those	operations	in	any
order,	resulting	in	lazy	evaluation.

The	following	example	uses	the	standard	library	function	generateSequence()
to	produce	an	infinite	sequence	of	natural	numbers.	The	first	argument	is	the
initial	element	in	the	sequence,	followed	by	a	lambda	defining	how	the	next
element	is	calculated	from	the	previous	element:

//	Sequences/GenerateSequence1.kt

import	atomictest.eq

fun	main()	{

		val	naturalNumbers	=

				generateSequence(1)	{	it	+	1	}

		naturalNumbers.take(3).toList()	eq

				listOf(1,	2,	3)

		naturalNumbers.take(10).sum()	eq	55

}

Collections	are	a	known	size,	discoverable	through	their	size	property.
Sequences	are	treated	as	if	they	are	infinite.	Here,	we	decide	how	many	elements
we	want	using	take(),	followed	by	a	terminal	operation	(toList()	or	sum()).

There’s	an	overloaded	version	of	generateSequence()	that	doesn’t	require	the
first	parameter,	only	a	lambda	that	returns	the	next	element	in	the	Sequence.
When	there	are	no	more	elements,	it	returns	null.	The	following	example
generates	a	Sequence	until	the	“termination	flag”	XXX	appears	in	its	input:

//	Sequences/GenerateSequence2.kt

import	atomictest.*

fun	main()	{

		val	items	=	mutableListOf(

				"first",	"second",	"third",	"XXX",	"4th"

		)

		val	seq	=	generateSequence	{

				items.removeAt(0).takeIf	{	it	!=	"XXX"	}

		}

		seq.toList()	eq	"[first,	second,	third]"

		capture	{

				seq.toList()

		}	eq	"IllegalStateException:	This	"	+

				"sequence	can	be	consumed	only	once."

}



removeAt(0)	removes	and	produces	the	zeroeth	element	from	the	List.
takeIf()	returns	the	receiver	(the	String	produced	by	removeAt(0))	if	it
satisfies	the	given	predicate,	and	null	if	the	predicate	fails	(when	the	String	is
"XXX").

You	can	only	iterate	once	through	a	Sequence.	Further	attempts	produce	an
exception.	To	make	multiple	passes	through	a	Sequence,	first	convert	it	to	some
type	of	Collection.

Here’s	an	implementation	for	takeIf(),	defined	using	a	generic	T	so	it	can	work
with	any	type	of	argument:

//	Sequences/DefineTakeIf.kt

package	sequences

import	atomictest.eq

fun	<T>	T.takeIf(

		predicate:	(T)	->	Boolean

):	T?	{

		return	if	(predicate(this))	this	else	null

}

fun	main()	{

		"abc".takeIf	{	it	!=	"XXX"	}	eq	"abc"

		"XXX".takeIf	{	it	!=	"XXX"	}	eq	null

}

Here,	generateSequence()	and	takeIf()	produce	a	decreasing	sequence	of
numbers:

//	Sequences/NumberSequence2.kt

import	atomictest.eq

fun	main()	{

		generateSequence(6)	{

				(it	-	1).takeIf	{	it	>	0	}

		}.toList()	eq	listOf(6,	5,	4,	3,	2,	1)

}

An	ordinary	if	expression	can	always	be	used	instead	of	takeIf(),	but
introducing	an	extra	identifier	can	make	the	if	expression	clumsy.	The	takeIf()
version	is	more	functional,	especially	if	it’s	used	as	a	part	of	a	chain	of	calls.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Local	Functions

You	can	define	functions	anywhere—even	inside	other	functions.

Named	functions	defined	within	other	functions	are	called	local	functions.	Local
functions	reduce	duplication	by	extracting	repetitive	code.	At	the	same	time,
they	are	only	visible	within	the	surrounding	function,	so	they	don’t	“pollute	your
namespace.”	Here,	even	though	log()	is	defined	just	like	any	other	function,	it’s
nested	inside	main():

//	LocalFunctions/LocalFunctions.kt

import	atomictest.eq

fun	main()	{

		val	logMsg	=	StringBuilder()

		fun	log(message:	String)	=

				logMsg.appendLine(message)

		log("Starting	computation")

		val	x	=	42		//	Imitate	computation

		log("Computation	result:	$x")

		logMsg.toString()	eq	"""

				Starting	computation

				Computation	result:	42

		"""

}

Local	functions	are	closures:	they	capture	vars	or	vals	from	the	surrounding
environment	that	would	otherwise	have	to	be	passed	as	additional	parameters.
log()	uses	logMsg,	which	is	defined	in	its	outer	scope.	This	way,	you	don’t
repeatedly	pass	logMsg	into	log().

You	can	create	local	extension	functions:

//	LocalFunctions/LocalExtensions.kt

import	atomictest.eq

fun	main()	{

		fun	String.exclaim()	=	"$this!"

		"Hello".exclaim()	eq	"Hello!"

		"Hallo".exclaim()	eq	"Hallo!"

		"Bonjour".exclaim()	eq	"Bonjour!"

		"Ciao".exclaim()	eq	"Ciao!"

}

exclaim()	is	available	only	inside	main().



Here	is	a	demonstration	class	and	example	values	for	use	in	this	atom:

//	LocalFunctions/Session.kt

package	localfunctions

class	Session(

		val	title:	String,

		val	speaker:	String

)

val	sessions	=	listOf(Session(

		"Kotlin	Coroutines",	"Roman	Elizarov"))

val	favoriteSpeakers	=	setOf("Roman	Elizarov")

You	can	refer	to	a	local	function	using	a	function	reference:

//	LocalFunctions/LocalFunctionReference.kt

import	localfunctions.*

import	atomictest.eq

fun	main()	{

		fun	interesting(session:	Session):	Boolean	{

				if	(session.title.contains("Kotlin")	&&

						session.speaker	in	favoriteSpeakers)	{

						return	true

				}

				//	...	more	checks

				return	false

		}

		sessions.any(::interesting)	eq	true

}

interesting()	is	only	used	once,	so	we	might	be	inclined	to	define	it	as	a
lambda.	As	you	will	see	later	in	this	atom,	the	return	expressions	within
interesting()	complicate	the	task	of	turning	it	into	a	lambda.	We	can	avoid
this	complication	with	an	anonymous	function.	Like	local	functions,	anonymous
functions	are	defined	within	other	functions—however,	an	anonymous	function
has	no	name.	Anonymous	functions	are	conceptually	similar	to	lambdas	but	use
the	fun	keyword.	Here’s	LocalFunctionReference.kt	rewritten	using	an
anonymous	function:

//	LocalFunctions/InterestingSessions.kt

import	localfunctions.*

import	atomictest.eq

fun	main()	{

		sessions.any(

				fun(session:	Session):	Boolean	{				//	[1]

						if	(session.title.contains("Kotlin")	&&

								session.speaker	in	favoriteSpeakers)	{

								return	true

						}

						//	...	more	checks

						return	false



				})	eq	true

}

[1]	An	anonymous	function	looks	like	a	regular	function	without	a	function
name.	Here,	the	anonymous	function	is	passed	as	an	argument	to
sessions.any().

If	a	lambda	becomes	too	complicated	and	hard	to	read,	replace	it	with	a	local
function	or	an	anonymous	function.

Labels
Here,	forEach()	acts	upon	a	lambda	containing	a	return:

//	LocalFunctions/ReturnFromFun.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4,	5)

		val	value	=	3

		var	result	=	""

		list.forEach	{

				result	+=	"$it"

				if	(it	==	value)	{

						result	eq	"123"

						return																			//	[1]

				}

		}

		result	eq	"Never	gets	here"		//	[2]

}

A	return	expression	exits	a	function	defined	using	fun	(that	is,	not	a	lambda).	In
line	[1]	this	means	returning	from	main().	Line	[2]	is	never	called	and	you	see
no	output.

To	return	only	from	a	lambda,	and	not	from	the	surrounding	function,	use	a
labeled	return:

//	LocalFunctions/LabeledReturn.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4,	5)

		val	value	=	3

		var	result	=	""

		list.forEach	{

				result	+=	"$it"

				if	(it	==	value)	return@forEach

		}

		result	eq	"12345"

}



Here,	the	label	is	the	name	of	the	function	that	called	the	lambda.	The	labeled
return	expression	return@forEach	tells	it	to	return	only	to	the	name	forEach.

You	can	create	a	label	by	preceeding	the	lambda	with	label@,	where	label	can
be	any	name:

//	LocalFunctions/CustomLabel.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3,	4,	5)

		val	value	=	3

		var	result	=	""

		list.forEach	tag@{													//	[1]

				result	+=	"$it"

				if	(it	==	value)	return@tag		//	[2]

		}

		result	eq	"12345"

}

[1]	This	lambda	is	labeled	tag.
[2]	return@tag	returns	from	the	lambda,	not	from	main().

Let’s	replace	the	anonymous	function	in	InterestingSessions.kt	with	a
lambda:

//	LocalFunctions/ReturnInsideLambda.kt

import	localfunctions.*

import	atomictest.eq

fun	main()	{

		sessions.any	{	session	->

				if	(session.title.contains("Kotlin")	&&

						session.speaker	in	favoriteSpeakers)	{

						return@any	true

				}

				//	...	more	checks

				false

		}	eq	true

}

We	must	return	to	a	label	so	it	exits	only	the	lambda	and	not	main().

Manipulating	Local	Functions
You	can	store	a	lambda	or	an	anonymous	function	in	a	var	or	val,	then	use	that
identifier	to	call	the	function.	To	store	a	local	function,	use	a	function	reference
(see	Member	References).



In	the	following	example,	first()	creates	an	anonymous	function,	second()
uses	a	lambda,	and	third()	returns	a	reference	to	a	local	function.	fourth()
achieves	the	same	effect	as	third()	but	uses	a	more	compact	expression	body.
fifth()	produces	the	same	effect	using	a	lambda:

//	LocalFunctions/ReturningFunc.kt

package	localfunctions

import	atomictest.eq

fun	first():	(Int)	->	Int	{

		val	func	=	fun(i:	Int)	=	i	+	1

		func(1)	eq	2

		return	func

}

fun	second():	(String)	->	String	{

		val	func2	=	{	s:	String	->	"$s!"	}

		func2("abc")	eq	"abc!"

		return	func2

}

fun	third():	()	->	String	{

		fun	greet()	=	"Hi!"

		return	::greet

}

fun	fourth()	=	fun()	=	"Hi!"

fun	fifth()	=	{	"Hi!"	}

fun	main()	{

		val	funRef1:	(Int)	->	Int	=	first()

		val	funRef2:	(String)	->	String	=	second()

		val	funRef3:	()	->	String	=	third()

		val	funRef4:	()	->	String	=	fourth()

		val	funRef5:	()	->	String	=	fifth()

		funRef1(42)	eq	43

		funRef2("xyz")	eq	"xyz!"

		funRef3()	eq	"Hi!"

		funRef4()	eq	"Hi!"

		funRef5()	eq	"Hi!"

		first()(42)	eq	43

		second()("xyz")	eq	"xyz!"

		third()()	eq	"Hi!"

		fourth()()	eq	"Hi!"

		fifth()()	eq	"Hi!"

}

main()	first	verifies	that	calling	each	function	does	indeed	return	a	function
reference	of	the	expected	type.	Each	funRef	is	then	called	with	an	appropriate
argument.	Finally,	each	function	is	called	and	then	the	returned	function
reference	is	immediately	called	by	adding	an	appropriate	argument	list.	For
example,	calling	first()	returns	a	function,	so	we	call	that	function	by
appending	the	argument	list	(42).



Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Folding	Lists

fold()	combines	all	elements	of	a	list,	in	order,	to	generate	a	single	result.

A	common	exercise	is	to	implement	operations	such	as	sum()	or	reverse()
using	fold().	Here,	fold()	sums	a	sequence:

//	FoldingLists/SumViaFold.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	10,	100,	1000)

		list.fold(0)	{	sum,	n	->

				sum	+	n

		}	eq	1111

}

fold()	takes	the	initial	value	(its	argument,	0	in	this	case)	and	successively
applies	the	operation	(expressed	here	as	a	lambda)	to	combine	the	current
accumulated	value	with	each	element.	fold()	first	adds	0	(the	initial	value)	and
1	to	get	1.	That	becomes	the	sum,	which	is	then	added	to	the	10	to	get	11,	which
becomes	the	new	sum.	The	operation	is	repeated	for	two	more	elements:	100	and
1000.	This	produces	111	and	1111.	The	fold()	will	stop	when	there	is	nothing
else	in	the	list,	returning	the	final	sum	of	1111.	Of	course,	fold()	doesn’t	really
know	it’s	doing	a	“sum”—the	choice	of	identifier	name	was	ours,	to	make	it
easier	to	understand.

To	illuminate	the	steps	in	a	fold(),	here’s	SumViaFold.kt	using	an	ordinary	for
loop:

//	FoldingLists/FoldVsForLoop.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	10,	100,	1000)

		var	accumulator	=	0

		val	operation	=

				{	sum:	Int,	i:	Int	->	sum	+	i	}

		for	(i	in	list)	{

				accumulator	=	operation(accumulator,	i)

		}

		accumulator	eq	1111

}



fold()	accumulates	values	by	successively	applying	operation	to	combine	the
current	element	with	the	accumulator	value.

Although	fold()	is	an	important	concept	and	the	only	way	to	accumulate	values
in	pure	functional	languages,	you	may	sometimes	still	use	an	ordinary	for	loop
in	Kotlin.

foldRight()	processes	elements	starting	from	right	to	left,	as	opposed	to	fold()
which	processes	the	elements	from	left	to	right.	This	example	demonstrates	the
difference:

//	FoldingLists/FoldRight.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf('a',	'b',	'c',	'd')

		list.fold("*")	{	acc,	elem	->

				"($acc)	+	$elem"

		}	eq	"((((*)	+	a)	+	b)	+	c)	+	d"

		list.foldRight("*")	{	elem,	acc	->

				"$elem	+	($acc)"

		}	eq	"a	+	(b	+	(c	+	(d	+	(*))))"

}

fold()	first	applies	the	operation	to	a,	as	we	can	see	in	(*)	+	a,	while
foldRight()	first	processes	the	right-hand	element	d,	and	processes	a	last.

fold()	and	foldRight()	take	an	explicit	accumulator	value	as	the	first
argument.	Sometimes	the	first	element	can	act	as	an	initial	value.	reduce()	and
reduceRight()	behave	like	fold()	and	foldRight()	but	use	the	first	and	last
element,	respectively,	as	the	initial	value:

//	FoldingLists/ReduceAndReduceRight.kt

import	atomictest.eq

fun	main()	{

		val	chars	=	"A	B	C	D	E	F	G	H	I".split("	")

		chars.fold("X")	{	a,	e	->	"$a	$e"}	eq

				"X	A	B	C	D	E	F	G	H	I"

		chars.foldRight("X")	{	a,	e	->	"$a	$e"	}	eq

				"A	B	C	D	E	F	G	H	I	X"

		chars.reduce	{	a,	e	->	"$a	$e"	}	eq

				"A	B	C	D	E	F	G	H	I"

		chars.reduceRight	{	a,	e	->	"$a	$e"	}	eq

				"A	B	C	D	E	F	G	H	I"

}

runningFold()	and	runningReduce()	produce	a	List	containing	all	the
intermediate	steps	of	the	process.	The	final	value	in	the	List	is	the	result	of	the
fold()	or	reduce():



//	FoldingLists/RunningFold.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(11,	13,	17,	19)

		list.fold(7)	{	sum,	n	->

				sum	+	n

		}	eq	67

		list.runningFold(7)	{	sum,	n	->

				sum	+	n

		}	eq	"[7,	18,	31,	48,	67]"

		list.reduce	{	sum,	n	->

				sum	+	n

		}	eq	60

		list.runningReduce	{	sum,	n	->

				sum	+	n

		}	eq	"[11,	24,	41,	60]"

}

runningFold()	first	stores	the	initial	value	(7),	then	stores	each	intermediate
result.	runningReduce()	keeps	track	of	each	sum	value.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Recursion

Recursion	is	the	programming	technique	of	calling	a	function	within	that
same	function.	Tail	recursion	is	an	optimization	that	can	be	explicitly
applied	to	some	recursive	functions.

A	recursive	function	uses	the	result	of	the	previous	recursive	call.	Factorials	are
a	common	example—factorial(n)	multiplies	all	numbers	from	1	to	n,	and	can
be	defined	like	this:

factorial(1)	is	1
factorial(n)	is	n	*	factorial(n	-	1)

factorial()	is	recursive	because	it	uses	the	result	from	the	same	function
applied	to	its	modified	argument.	Here’s	a	recursive	implementation	of
factorial():

//	Recursion/Factorial.kt

package	recursion

import	atomictest.eq

fun	factorial(n:	Long):	Long	{

		if	(n	<=	1)	return	1

		return	n	*	factorial(n	-	1)

}

fun	main()	{

		factorial(5)	eq	120

		factorial(17)	eq	355687428096000

}

While	this	is	easy	to	read,	it’s	expensive.	When	calling	a	function,	the
information	about	that	function	and	its	arguments	are	stored	in	a	call	stack.	You
see	the	call	stack	when	an	exception	is	thrown	and	Kotlin	displays	the	stack
trace:

//	Recursion/CallStack.kt

package	recursion

fun	illegalState()	{

		//	throw	IllegalStateException()

}

fun	fail()	=	illegalState()



fun	main()	{

		fail()

}

If	you	uncomment	the	line	containing	the	exception,	you’ll	see	the	following:

Exception	in	thread	"main"	java.lang.IllegalStateException

		at	recursion.CallStackKt.illegalState(CallStack.kt:5)

		at	recursion.CallStackKt.fail(CallStack.kt:8)

		at	recursion.CallStackKt.main(CallStack.kt:11)

The	stack	trace	displays	the	state	of	the	call	stack	at	the	moment	the	exception	is
thrown.	For	CallStack.kt,	the	call	stack	consists	of	only	three	functions:

The	Call	Stack

We	start	in	main(),	which	calls	fail().	The	fail()	call	is	added	to	the	call
stack	along	with	its	arguments.	Next,	fail()	calls	illegalState(),	which	is
also	added	to	the	call	stack.

When	you	call	a	recursive	function,	each	recursive	invocation	adds	a	frame	to
the	call	stack.	This	can	easily	produce	a	StackOverflowError,	which	means	that
your	call	stack	became	too	large	and	exhausted	the	available	memory.

Programmers	commonly	cause	StackOverflowErrors	by	forgetting	to	terminate
the	chain	of	recursive	calls—this	is	infinite	recursion:

//	Recursion/InfiniteRecursion.kt

package	recursion

fun	recurse(i:	Int):	Int	=	recurse(i	+	1)

fun	main()	{

		//	println(recurse(1))

}

If	you	uncomment	the	line	in	main(),	you’ll	see	a	stacktrace	with	many
duplicate	calls:



Exception	in	thread	"main"	java.lang.StackOverflowError

at	recursion.InfiniteRecursionKt.recurse(InfiniteRecursion.kt:4)

at	recursion.InfiniteRecursionKt.recurse(InfiniteRecursion.kt:4)

...

at	recursion.InfiniteRecursionKt.recurse(InfiniteRecursion.kt:4)

The	recursive	function	keeps	calling	itself	(with	a	different	argument	each	time),
and	fills	up	the	call	stack:

Infinite	Recursion

Infinite	recursion	always	ends	with	a	StackOverflowError,	but	you	can	produce
the	same	result	without	infinite	recursion,	simply	by	making	enough	recursive
function	calls.	For	example,	let’s	sum	the	integers	up	to	a	given	number,
recursively	defining	sum(n)	as	n	+	sum(n	-	1):

//	Recursion/RecursionLimits.kt

package	recursion

import	atomictest.eq

fun	sum(n:	Long):	Long	{

		if	(n	==	0L)	return	0

		return	n	+	sum(n	-	1)

}

fun	main()	{

		sum(2)	eq	3

		sum(1000)	eq	500500

		//	sum(100_000)	eq	500050000							//	[1]

		(1..100_000L).sum()	eq	5000050000		//	[2]

}

This	recursion	quickly	becomes	expensive.	If	you	uncomment	line	[1],	you’ll
discover	that	it	takes	far	too	long	to	complete,	and	all	those	recursive	calls
overflow	the	stack.	If	sum(100_000)	still	works	on	your	machine,	try	a	bigger
number.



Calling	sum(100_000)	causes	a	StackOverflowError	by	adding	100_000	sum()
function	calls	to	the	call	stack.	For	comparison,	line	[2]	uses	the	sum()	library
function	to	add	the	numbers	within	the	range,	and	this	does	not	fail.

To	avoid	a	StackOverflowError,	you	can	use	an	iterative	solution	instead	of
recursion:

//	Recursion/Iteration.kt

package	iteration

import	atomictest.eq

fun	sum(n:	Long):	Long	{

		var	accumulator	=	0L

		for	(i	in	1..n)	{

				accumulator	+=	i

		}

		return	accumulator

}

fun	main()	{

		sum(10000)	eq	50005000

		sum(100000)	eq	5000050000

}

There’s	no	risk	of	a	StackOverflowError	because	we	only	make	a	single	sum()
call	and	the	result	is	calculated	in	a	for	loop.	Although	the	iterative	solution	is
straightforward,	it	must	use	the	mutable	state	variable	accumulator	to	store	the
changing	value,	and	functional	programming	attempts	to	avoid	mutation.

To	prevent	call	stack	overflows,	functional	languages	(including	Kotlin)	use	a
technique	called	tail	recursion.	The	goal	of	tail	recursion	is	to	reduce	the	size	of
the	call	stack.	In	the	sum()	example,	the	call	stack	becomes	a	single	function
call,	just	as	it	did	in	Iteration.kt:



Regular	Recursion	vs.	Tail	Recursion

To	produce	tail	recursion,	use	the	tailrec	keyword.	Under	the	right	conditions,
this	converts	recursive	calls	into	iteration,	eliminating	call-stack	overhead.	This
is	a	compiler	optimization,	but	it	won’t	work	for	just	any	recursive	call.

To	use	tailrec	successfully,	recursion	must	be	the	final	operation,	which	means
there	can	be	no	extra	calculations	on	the	result	of	the	recursive	call	before	it	is
returned.	For	example,	if	we	simply	put	tailrec	before	the	fun	for	sum()	in
RecursionLimits.kt,	Kotlin	produces	the	following	warning	messages:

A	function	is	marked	as	tail-recursive	but	no	tail	calls	are	found
Recursive	call	is	not	a	tail	call

The	problem	is	that	n	is	combined	with	the	result	of	the	recursive	sum()	call
before	returning	that	result.	For	tailrec	to	be	successful,	the	result	of	the
recursive	call	must	be	returned	without	doing	anything	to	it	during	the	return.
This	often	requires	some	work	in	rearranging	the	function.	For	sum(),	a
successful	tailrec	looks	like	this:

//	Recursion/TailRecursiveSum.kt

package	tailrecursion

import	atomictest.eq

private	tailrec	fun	sum(

		n:	Long,

		accumulator:	Long

):	Long	=

		if	(n	==	0L)	accumulator

		else	sum(n	-	1,	accumulator	+	n)

fun	sum(n:	Long)	=	sum(n,	0)



fun	main()	{

		sum(2)	eq	3

		sum(10000)	eq	50005000

		sum(100000)	eq	5000050000

}

By	including	the	accumulator	parameter,	the	addition	happens	during	the
recursive	call	and	you	don’t	do	anything	to	the	result	except	return	it.	The
tailrec	keyword	is	now	successful,	because	the	code	was	rewritten	to	delegate
all	activities	to	the	recursive	call.	In	addition,	accumulator	becomes	an
immutable	value,	eliminating	the	complaint	we	had	for	Iteration.kt.

factorial()	is	a	common	example	for	demonstrating	tail	recursion,	and	is	one
of	the	exercises	for	this	atom.	Another	example	is	the	Fibonacci	sequence,	where
each	new	Fibonacci	number	is	the	sum	of	the	previous	two.	The	first	two
numbers	are	0	and	1,	which	produces	the	following	sequence:	0,	1,	1,	2,	3,
5,	8,	13,	21	...	This	can	be	expressed	recursively:

//	Recursion/VerySlowFibonacci.kt

package	slowfibonacci

import	atomictest.eq

fun	fibonacci(n:	Long):	Long	{

		return	when	(n)	{

				0L	->	0

				1L	->	1

				else	->

						fibonacci(n	-	1)	+	fibonacci(n	-	2)

		}

}

fun	main()	{

		fibonacci(0)	eq	0

		fibonacci(22)	eq	17711

		//	Very	time-consuming:

		//	fibonacci(50)	eq	12586269025

}

This	implementation	is	terribly	inefficient	because	the	previously-calculated
results	are	not	reused.	Thus,	the	number	of	operations	grows	exponentially:



Inefficient	Computation	of	Fibonacci	Numbers

When	computing	the	50th	Fibonacci	number,	we	first	compute	the	49th	and	48th
numbers	independently,	which	means	we	compute	the	48th	number	twice.	The
46th	number	is	computed	as	many	as	4	times,	and	so	on.

Using	tail	recursion,	the	calculations	become	dramatically	more	efficient:

//	Recursion/Fibonacci.kt

package	recursion

import	atomictest.eq

fun	fibonacci(n:	Int):	Long	{

		tailrec	fun	fibonacci(

				n:	Int,

				current:	Long,

				next:	Long

		):	Long	{

				if	(n	==	0)	return	current

				return	fibonacci(

						n	-	1,	next,	current	+	next)

		}

		return	fibonacci(n,	0L,	1L)

}

fun	main()	{

		(0..8).map	{	fibonacci(it)	}	eq

				"[0,	1,	1,	2,	3,	5,	8,	13,	21]"

		fibonacci(22)	eq	17711

		fibonacci(50)	eq	12586269025

}

We	could	avoid	the	local	fibonacci()	function	using	default	arguments.
However,	default	arguments	imply	that	the	user	can	put	other	values	in	those
defaults,	which	produce	incorrect	results.	Because	the	auxiliary	fibonacci()
function	is	a	local	function,	we	don’t	expose	the	additional	parameters,	and	you
can	only	call	fibonacci(n).



main()	shows	the	first	eight	elements	of	the	Fibonacci	sequence,	the	result	for
22,	and	finally	the	50th	Fibonacci	number	that	is	now	produced	very	quickly.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



SECTION	V:	OBJECT-ORIENTED

PROGRAMMING

…	inheritance	is	a	very	flexible	mechanism.	It’s	possible	and	in	fact	fairly
common	to	misuse	it,	but	that’s	not	a	reason	to	distrust	it	systematically	as
seems	to	have	become	the	fashion.—Bertrand	Meyer



Interfaces

An	interface	describes	the	concept	of	a	type.	It	is	a	prototype	for	all	classes
that	implement	the	interface.

It	describes	what	a	class	should	do,	but	not	how	it	should	do	it.	An	interface
provides	a	form,	but	generally	no	implementation.	It	specifies	an	object’s	actions
without	detailing	how	those	actions	are	performed.	The	interface	describes	the
mission	or	goal	of	an	entity,	versus	a	class	that	contains	implementation	details.

One	dictionary	definition	says	that	an	interface	is	“The	place	at	which
independent	and	often	unrelated	systems	meet	and	act	on	or	communicate	with
each	other.”	Thus,	an	interface	is	a	means	of	communication	between	different
parts	of	a	system.

An	Application	Programming	Interface	(API)	is	a	set	of	clearly	defined
communication	paths	between	various	software	components.	In	object-oriented
programming,	the	API	of	an	object	is	the	set	of	public	members	it	uses	to
interact	with	other	objects.

Code	using	a	particular	interface	only	knows	what	functions	can	be	called	for
that	interface.	The	interface	establishes	a	“protocol”	between	classes.	(Some
object-oriented	languages	have	a	keyword	called	protocol	to	do	the	same	thing.)

To	create	an	interface,	use	the	interface	keyword	instead	of	the	class
keyword.	When	defining	a	class	that	implements	an	interface,	follow	the	class
name	with	a	:	(colon)	and	the	name	of	the	interface:

//	Interfaces/Computer.kt

package	interfaces

import	atomictest.*

interface	Computer	{

		fun	prompt():	String

		fun	calculateAnswer():	Int

}

class	Desktop	:	Computer	{

		override	fun	prompt()	=	"Hello!"

		override	fun	calculateAnswer()	=	11

}



class	DeepThought	:	Computer	{

		override	fun	prompt()	=	"Thinking..."

		override	fun	calculateAnswer()	=	42

}

class	Quantum	:	Computer	{

		override	fun	prompt()	=	"Probably..."

		override	fun	calculateAnswer()	=	-1

}

fun	main()	{

		val	computers	=	listOf(

				Desktop(),	DeepThought(),	Quantum()

		)

		computers.map	{	it.calculateAnswer()	}	eq

				"[11,	42,	-1]"

		computers.map	{	it.prompt()	}	eq

				"[Hello!,	Thinking...,	Probably...]"

}

Computer	declares	prompt()	and	calculateAnswer()	but	provides	no
implementations.	A	class	that	implements	the	interface	must	provide	bodies	for
all	the	declared	functions,	making	those	functions	concrete.	In	main()	you	see
that	different	implementations	of	an	interface	express	different	behaviors	via
their	function	definitions.

When	implementing	a	member	of	an	interface,	you	must	use	the	override
modifier.	override	tells	Kotlin	you	are	intentionally	using	the	same	name	that
appears	in	the	interface	(or	base	class)—that	is,	you	aren’t	accidentally
overriding.

An	interface	can	declare	properties.	These	must	be	overridden	in	all	classes
implementing	that	interface:

//	Interfaces/PlayerInterface.kt

package	interfaces

import	atomictest.eq

interface	Player	{

		val	symbol:	Char

}

class	Food	:	Player	{

		override	val	symbol	=	'.'

}

class	Robot	:	Player	{

		override	val	symbol	get()	=	'R'

}

class	Wall(override	val	symbol:	Char)	:	Player

fun	main()	{

		listOf(Food(),	Robot(),	Wall('|')).map	{



				it.symbol

		}	eq	"[.,	R,	|]"

}

Each	subclass	overrides	the	symbol	property	in	a	different	way:

Food	directly	replaces	the	symbol	value.
Robot	has	a	custom	getter	that	returns	the	value	(see	Property	Accessors).
Wall	overrides	symbol	inside	the	constructor	argument	list	(see
Constructors)

An	enumeration	can	implement	an	interface:

//	Interfaces/Hotness.kt

package	interfaces

import	atomictest.*

interface	Hotness	{

		fun	feedback():	String

}

enum	class	SpiceLevel	:	Hotness	{

		Mild	{

				override	fun	feedback()	=

						"It	adds	flavor!"

		},

		Medium	{

				override	fun	feedback()	=

						"Is	it	warm	in	here?"

		},

		Hot	{

				override	fun	feedback()	=

						"I'm	suddenly	sweating	a	lot."

		},

		Flaming	{

				override	fun	feedback()	=

						"I'm	in	pain.	I	am	suffering."

		}

}

fun	main()	{

		SpiceLevel.values().map	{	it.feedback()	}	eq

				"[It	adds	flavor!,	"	+

				"Is	it	warm	in	here?,	"	+

				"I'm	suddenly	sweating	a	lot.,	"	+

				"I'm	in	pain.	I	am	suffering.]"

}

The	compiler	ensures	that	each	enum	element	provides	a	definition	for
feedback().

SAM	Conversions



The	Single	Abstract	Method	(SAM)	interface	comes	from	Java,	where	they	call
member	functions	“methods.”	Kotlin	has	a	special	syntax	for	defining	SAM
interfaces:	fun	interface.	Here	we	show	SAM	interfaces	with	different
parameter	lists:

//	Interfaces/SAM.kt

package	interfaces

fun	interface	ZeroArg	{

		fun	f():	Int

}

fun	interface	OneArg	{

		fun	g(n:	Int):	Int

}

fun	interface	TwoArg	{

		fun	h(i:	Int,	j:	Int):	Int

}

When	you	say	fun	interface,	the	compiler	ensures	there	is	only	a	single
member	function.

You	can	implement	a	SAM	interface	in	the	ordinary	verbose	way,	or	by	passing
it	a	lambda;	the	latter	is	called	a	SAM	conversion.	In	a	SAM	conversion,	the
lambda	becomes	the	implementation	for	the	single	method	in	the	interface.	Here
we	show	both	ways	to	implement	the	three	interfaces:

//	Interfaces/SAMImplementation.kt

package	interfaces

import	atomictest.eq

class	VerboseZero	:	ZeroArg	{

		override	fun	f()	=	11

}

val	verboseZero	=	VerboseZero()

val	samZero	=	ZeroArg	{	11	}

class	VerboseOne	:	OneArg	{

		override	fun	g(n:	Int)	=	n	+	47

}

val	verboseOne	=	VerboseOne()

val	samOne	=	OneArg	{	it	+	47	}

class	VerboseTwo	:	TwoArg	{

		override	fun	h(i:	Int,	j:	Int)	=	i	+	j

}

val	verboseTwo	=	VerboseTwo()

val	samTwo	=		TwoArg	{	i,	j	->	i	+	j	}



fun	main()	{

		verboseZero.f()	eq	11

		samZero.f()	eq	11

		verboseOne.g(92)	eq	139

		samOne.g(92)	eq	139

		verboseTwo.h(11,	47)	eq	58

		samTwo.h(11,	47)	eq	58

}

Comparing	the	“verbose”	implementations	to	the	“sam”	implementations	you
can	see	that	SAM	conversions	produce	much	more	succinct	syntax	for	a
commonly-used	idiom,	and	you	aren’t	forced	to	define	a	class	to	create	a	single
object.

You	can	pass	a	lambda	where	a	SAM	interface	is	expected,	without	first
wrapping	it	into	an	object:

//	Interfaces/SAMConversion.kt

package	interfaces

import	atomictest.trace

fun	interface	Action	{

		fun	act()

}

fun	delayAction(action:	Action)	{

		trace("Delaying...")

		action.act()

}

fun	main()	{

		delayAction	{	trace("Hey!")	}

		trace	eq	"Delaying...	Hey!"

}

In	main()	we	pass	a	lambda	instead	of	an	object	that	implements	the	Action
interface.	Kotlin	automatically	creates	an	Action	object	from	this	lambda.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Complex	Constructors

For	code	to	work	correctly,	objects	must	be	properly	initialized.

A	constructor	is	a	special	function	that	creates	a	new	object.	In	Constructors,	we
saw	simple	constructors	that	only	initialize	their	arguments.	Using	var	or	val	in
the	parameter	list	makes	those	parameters	properties,	accessible	from	outside	the
object:

//	ComplexConstructors/SimpleConstructor.kt

package	complexconstructors

import	atomictest.eq

class	Alien(val	name:	String)

fun	main()	{

		val	alien	=	Alien("Pencilvester")

		alien.name	eq	"Pencilvester"

}

In	these	cases,	we	don’t	write	constructor	code—Kotlin	does	it	for	us.	For	more
customization,	add	constructor	code	in	the	class	body.	Code	inside	the	init
section	is	executed	during	object	creation:

//	ComplexConstructors/InitSection.kt

package	complexconstructors

import	atomictest.eq

private	var	counter	=	0

class	Message(text:	String)	{

		private	val	content:	String

		init	{

				counter	+=	10

				content	=	"[$counter]	$text"

		}

		override	fun	toString()	=	content

}

fun	main()	{

		val	m1	=	Message("Big	ba-da	boom!")

		m1	eq	"[10]	Big	ba-da	boom!"

		val	m2	=	Message("Bzzzzt!")

		m2	eq	"[20]	Bzzzzt!"

}



Constructor	parameters	are	accessible	inside	the	init	section	even	if	they	aren’t
marked	as	properties	using	var	or	val.

Although	defined	as	val,	content	is	not	initialized	at	the	point	of	definition.	In
this	case,	Kotlin	ensures	that	initialization	occurs	at	one	(and	only	one)	point
during	construction.	Either	reassigning	content	or	forgetting	to	initialize	it
produces	an	error	message.

-

A	constructor	is	the	combination	of	its	constructor	parameter	list—initialized
before	entering	the	class	body—and	the	init	section(s),	executed	during	object
creation.	Kotlin	allows	multiple	init	sections,	which	are	executed	in	definition
order.	However,	in	a	large	and	complex	class,	spreading	out	the	init	sections
may	produce	maintenance	issues	for	programmers	who	are	accustomed	to	a
single	init	section.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Secondary	Constructors

When	you	require	several	ways	to	construct	an	object,	named	and	default
arguments	are	usually	the	easiest	approach.	Sometimes,	however,	you	must
create	multiple	overloaded	constructors.

The	constructor	is	“overloaded”	because	you’re	making	different	ways	to	create
objects	of	the	same	class.	In	Kotlin,	overloaded	constructors	are	called
secondary	constructors.	The	constructor	parameter	list	(directly	after	the	class
name)	combined	with	property	initializations	and	the	init	block	is	called	the
primary	constructor.

To	create	a	secondary	constructor,	use	the	constructor	keyword	followed	by	a
parameter	list	that’s	distinct	from	all	other	primary	and	secondary	parameter
lists.	Within	a	secondary	constructor,	the	this	keyword	calls	either	the	primary
constructor	or	another	secondary	constructor:

//	SecondaryConstructors/WithSecondary.kt

package	secondaryconstructors

import	atomictest.*

class	WithSecondary(i:	Int)	{

		init	{

				trace("Primary:	$i")

		}

		constructor(c:	Char)	:	this(c	-	'A')	{

				trace("Secondary:	'$c'")

		}

		constructor(s:	String)	:

				this(s.first())	{													//	[1]

				trace("Secondary:	\"$s\"")

		}

		/*	Doesn't	compile	without	a	call

					to	the	primary	constructor:

		constructor(f:	Float)	{									//	[2]

				trace("Secondary:	$f")

		}

		*/

}

fun	main()	{

		fun	sep()	=	trace("-".repeat(10))

		WithSecondary(1)

		sep()

		WithSecondary('D')

		sep()

		WithSecondary("Last	Constructor")



		trace	eq	"""

				Primary:	1

				----------

				Primary:	3

				Secondary:	'D'

				----------

				Primary:	11

				Secondary:	'L'

				Secondary:	"Last	Constructor"

		"""

}

Calling	another	constructor	from	a	secondary	constructor	(using	this)	must
happen	before	additional	constructor	logic,	because	the	constructor	body	may
depend	on	those	other	initializations.	Thus	it	precedes	the	constructor	body.

The	argument	list	determines	the	constructor	to	call.	WithSecondary(1)	matches
the	primary	constructor,	WithSecondary('D')	matches	the	first	secondary
constructor,	and	WithSecondary("Last	Constructor")	matches	the	second
secondary	constructor.	The	this()	call	in	[1]	matches	the	first	secondary
constructor,	and	you	can	see	the	chain	of	calls	in	the	output.

The	primary	constructor	must	always	be	called,	either	directly	or	through	a	call
to	a	secondary	constructor.	Otherwise,	Kotlin	generates	a	compile-time	error,	as
in	[2].	Thus,	all	common	initialization	logic	that	can	be	shared	between
constructors	should	be	placed	in	the	primary	constructor.

An	init	section	is	not	required	when	using	secondary	constructors:

//	SecondaryConstructors/GardenItem.kt

package	secondaryconstructors

import	atomictest.eq

import	secondaryconstructors.Material.*

enum	class	Material	{

		Ceramic,	Metal,	Plastic

}

class	GardenItem(val	name:	String)	{

		var	material:	Material	=	Plastic

		constructor(

				name:	String,	material:	Material				//	[1]

		)	:	this(name)	{																						//	[2]

				this.material	=	material												//	[3]

		}

		constructor(

				material:	Material

		)	:	this("Strange	Thing",	material)			//	[4]

		override	fun	toString()	=	"$material	$name"

}

fun	main()	{

		GardenItem("Elf").material	eq	Plastic



		GardenItem("Snowman").name	eq	"Snowman"

		GardenItem("Gazing	Ball",	Metal)	eq			//	[5]

				"Metal	Gazing	Ball"

		GardenItem(material	=	Ceramic)	eq

				"Ceramic	Strange	Thing"

}

[1]	Only	the	parameters	of	the	primary	constructor	can	be	declared	as
properties	via	val	or	var.
[2]	You	cannot	declare	a	return	type	for	a	secondary	constructor.
[3]	The	material	parameter	has	the	same	name	as	a	property,	so	we
disambiguate	it	using	this.
[4]	The	secondary	constructor	body	is	optional	(although	you	must	still
include	an	explicit	this()	call).

When	calling	the	first	secondary	constructor	in	line	[5],	the	property	material	is
assigned	twice.	First,	the	Plastic	value	is	assigned	during	the	call	to	the	primary
constructor	(in	[2])	and	initialization	of	all	the	class	properties,	then	it’s	changed
to	the	material	parameter	at	[3].

The	GardenItem	class	can	be	simplified	using	default	arguments,	replacing	the
secondary	constructors	with	a	single	primary	constructor.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Inheritance

Inheritance	is	a	mechanism	for	creating	a	new	class	by	reusing	and
modifying	an	existing	class.

Objects	store	data	in	properties	and	perform	actions	via	member	functions.	Each
object	occupies	a	unique	place	in	storage	so	one	object’s	properties	can	have
different	values	from	every	other	object.	An	object	also	belongs	to	a	category
called	a	class,	which	determines	the	form	(properties	and	functions)	for	its
objects.	Thus,	an	object	looks	like	the	class	that	formed	it.

Creating	and	debugging	a	class	can	require	extensive	work.	What	if	you	want	to
make	a	class	that’s	similar	to	an	existing	class,	but	with	some	variations?	It
seems	wasteful	to	build	a	new	class	from	scratch.	Object-oriented	languages
provide	a	mechanism	for	reuse	called	inheritance.

Inheritance	follows	the	concept	of	biological	inheritance.	You	say,	“I	want	to
make	a	new	class	from	an	existing	class,	but	with	some	additions	and
modifications.”

The	syntax	for	inheritance	is	similar	to	implementing	an	interface.	To	inherit	a
new	class	Derived	from	an	existing	class	Base,	use	a	:	(colon):

//	Inheritance/BasicInheritance.kt

package	inheritance

open	class	Base

class	Derived	:	Base()

The	subsequent	atom	explains	the	reason	for	the	parentheses	after	Base	during
inheritance.

The	terms	base	class	and	derived	class	(or	parent	class	and	child	class,	or
superclass	and	subclass)	are	often	used	to	describe	the	inheritance	relationship.

The	base	class	must	be	open.	A	non-open	class	doesn’t	allow	inheritance—it	is
closed	by	default.	This	differs	from	most	other	object-oriented	languages.	In



Java,	for	example,	a	class	is	automatically	inheritable	unless	you	explicitly
forbid	inheritance	by	declaring	that	class	to	be	final.	Although	Kotlin	allows	it,
the	final	modifier	is	redundant	because	every	class	is	effectively	final	by
default:

//	Inheritance/OpenAndFinalClasses.kt

package	inheritance

//	This	class	can	be	inherited:

open	class	Parent

class	Child	:	Parent()

//	Child	is	not	open,	so	this	fails:

//	class	GrandChild	:	Child()

//	This	class	can't	be	inherited:

final	class	Single

//	The	same	as	using	'final':

class	AnotherSingle

Kotlin	forces	you	to	clarify	your	intent	by	using	the	open	keyword	to	specify	that
a	class	is	designed	for	inheritance.

In	the	following	example,	GreatApe	is	a	base	class,	and	has	two	properties	with
fixed	values.	The	derived	classes	Bonobo,	Chimpanzee	and	BonoboB	are	new
types	that	are	identical	to	their	parent	class:

//	Inheritance/GreatApe.kt

package	inheritance.ape1

import	atomictest.eq

open	class	GreatApe	{

		val	weight	=	100.0

		val	age	=	12

}

open	class	Bonobo	:	GreatApe()

class	Chimpanzee	:	GreatApe()

class	BonoboB	:	Bonobo()

fun	GreatApe.info()	=	"wt:	$weight	age:	$age"

fun	main()	{

		GreatApe().info()	eq	"wt:	100.0	age:	12"

		Bonobo().info()	eq	"wt:	100.0	age:	12"

		Chimpanzee().info()	eq	"wt:	100.0	age:	12"

		BonoboB().info()	eq	"wt:	100.0	age:	12"

}

info()	is	an	extension	for	GreatApe,	so	naturally	you	can	call	it	on	a	GreatApe.
But	notice	that	you	can	also	call	info()	on	a	Bonobo,	a	Chimpanzee,	or	a
BonoboB!	Even	though	the	latter	three	are	distinct	types,	Kotlin	happily	accepts



them	as	if	they	were	the	same	type	as	GreatApe.	This	works	at	any	level	of
inheritance—BonoboB	is	two	inheritance	levels	away	from	GreatApe.

Inheritance	guarantees	that	anything	inheriting	from	GreatApe	is	a	GreatApe.	All
code	that	acts	upon	objects	of	the	derived	classes	knows	that	GreatApe	is	at	their
core,	so	any	functions	and	properties	in	GreatApe	will	also	be	available	in	its
child	classes.

Inheritance	enables	you	to	write	a	single	piece	of	code	(the	info()	function)	that
works	not	just	with	one	class,	but	also	with	every	class	that	inherits	that	class.
Thus,	inheritance	creates	opportunities	for	code	simplification	and	reuse.

GreatApe.kt	is	a	bit	too	simple	because	all	the	classes	are	identical.	Inheritance
gets	interesting	when	you	start	overriding	functions,	which	means	redefining	a
function	from	a	base	class	to	do	something	different	in	a	derived	class.

Let’s	look	at	another	version	of	GreatApe.kt.	This	time	we	include	member
functions	that	are	modified	in	the	subclasses:

//	Inheritance/GreatApe2.kt

package	inheritance.ape2

import	atomictest.eq

open	class	GreatApe	{

		protected	var	energy	=	0

		open	fun	call()	=	"Hoo!"

		open	fun	eat()	{

				energy	+=	10

		}

		fun	climb(x:	Int)	{

				energy	-=	x

		}

		fun	energyLevel()	=	"Energy:	$energy"

}

class	Bonobo	:	GreatApe()	{

		override	fun	call()	=	"Eep!"

		override	fun	eat()	{

				//	Modify	the	base-class	var:

				energy	+=	10

				//	Call	the	base-class	version:

				super.eat()

		}

		//	Add	a	function:

		fun	run()	=	"Bonobo	run"

}

class	Chimpanzee	:	GreatApe()	{

		//	New	property:

		val	additionalEnergy	=	20

		override	fun	call()	=	"Yawp!"

		override	fun	eat()	{

				energy	+=	additionalEnergy



				super.eat()

		}

		//	Add	a	function:

		fun	jump()	=	"Chimp	jump"

}

fun	talk(ape:	GreatApe):	String	{

		//	ape.run()		//	Not	an	ape	function

		//	ape.jump()	//	Nor	this

		ape.eat()

		ape.climb(10)

		return	"${ape.call()}	${ape.energyLevel()}"

}

fun	main()	{

		//	Cannot	access	'energy':

		//	GreatApe().energy

		talk(GreatApe())	eq	"Hoo!	Energy:	0"

		talk(Bonobo())	eq	"Eep!	Energy:	10"

		talk(Chimpanzee())	eq	"Yawp!	Energy:	20"

}

Every	GreatApe	has	a	call().	They	store	energy	when	they	eat()	and	they
expend	energy	when	they	climb().

As	described	in	Constraining	Visibility,	the	derived	class	can’t	access	the
private	members	of	the	base	class.	Sometimes	the	creator	of	the	base	class
would	like	to	take	a	particular	member	and	grant	access	to	derived	classes	but
not	to	the	world	in	general.	That’s	what	protected	does:	protected	members
are	closed	to	the	outside	world,	but	can	be	accessed	or	overridden	in	subclasses.

If	we	declare	energy	as	private,	it	won’t	be	possible	to	change	it	whenever
GreatApe	is	used,	which	is	good,	but	we	also	can’t	access	it	in	subclasses.
Making	it	protected	allows	us	to	keep	it	accessible	to	subclasses	but	invisible	to
the	outside	world.

call()	is	defined	the	same	way	in	Bonobo	and	Chimpanzee	as	it	is	in	GreatApe.
It	has	no	parameters	and	type	inference	determines	that	it	returns	a	String.

Both	Bonobo	and	Chimpanzee	should	have	different	behaviors	for	call()	than
GreatApe,	so	we	want	to	change	their	definitions	of	call().	If	you	create	an
identical	function	signature	in	a	derived	class	as	in	a	base	class,	you	substitute
the	behavior	defined	in	the	base	class	with	your	new	behavior.	This	is	called
overriding.

When	Kotlin	sees	an	identical	function	signature	in	the	derived	class	as	in	the
base	class,	it	decides	that	you’ve	made	a	mistake,	called	an	accidental	override.
If	you	write	a	function	that	has	the	same	name	as	a	function	in	the	base	class,



you	get	an	error	message	saying	you	forgot	the	override	keyword.	Kotlin
assumes	you’ve	unintentionally	chosen	the	same	name,	parameters	and	return
type	unless	you	use	the	override	keyword	(which	you	first	saw	in	Constructors)
to	say	“yes,	I	mean	to	do	this.”	The	override	keyword	also	helps	when	reading
the	code,	so	you	don’t	have	to	compare	signatures	to	notice	the	overrides.

Kotlin	imposes	an	additional	constraint	when	overriding	functions.	Just	as	you
cannot	inherit	from	a	base	class	unless	that	base	class	is	open,	you	cannot
override	a	function	from	a	base	class	unless	that	function	is	defined	as	open	in
the	base	class.	Note	that	climb()	and	energyLevel()	are	not	open,	so	they
cannot	be	overridden.	Inheritance	and	overriding	cannot	be	accomplished	in
Kotlin	without	clear	intentions.

It’s	especially	interesting	to	take	a	Bonobo	or	a	Chimpanzee	and	treat	it	as	an
ordinary	GreatApe.	Inside	talk(),	call()	produces	the	correct	behavior	in	each
case.	talk()	somehow	knows	the	exact	type	of	the	object	and	produces	the
appropriate	variation	of	call().	This	is	polymorphism.

Inside	talk(),	you	can	only	call	GreatApe	member	functions	because	talk()’s
parameter	is	a	GreatApe.	Even	though	Bonobo	defines	run()	and	Chimpanzee
defines	jump(),	neither	function	is	part	of	GreatApe.

Often	when	you	override	a	function,	you	want	to	call	the	base-class	version	of
that	function	(for	one	thing,	to	reuse	the	code),	as	seen	in	the	overrides	for
eat().	This	produces	a	conundrum:	If	you	simply	call	eat(),	you	call	the	same
function	you’re	currently	inside	(as	we’ve	seen	in	Recursion).	To	call	the	base-
class	version	of	eat(),	use	the	super	keyword,	short	for	“superclass.”

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Base	Class	Initialization

When	a	class	inherits	another	class,	Kotlin	guarantees	that	both	classes	are
properly	initialized.

Kotlin	creates	valid	objects	by	ensuring	that	constructors	are	called:

Constructors	for	member	objects.
Constructors	for	new	objects	added	in	the	derived	class.
The	constructor	for	the	base	class.

In	the	Inheritance	examples,	the	base	classes	didn’t	have	constructor	parameters.
If	a	base	class	does	have	constructor	parameters,	a	derived	class	must	provide
those	arguments	during	construction.

Here’s	the	first	GreatApe	example,	rewritten	with	constructor	parameters:

//	BaseClassInit/GreatApe3.kt

package	baseclassinit

import	atomictest.eq

open	class	GreatApe(

		val	weight:	Double,

		val	age:	Int

)

open	class	Bonobo(weight:	Double,	age:	Int)	:

		GreatApe(weight,	age)

class	Chimpanzee(weight:	Double,	age:	Int)	:

		GreatApe(weight,	age)

class	BonoboB(weight:	Double,	age:	Int)	:

		Bonobo(weight,	age)

fun	GreatApe.info()	=	"wt:	$weight	age:	$age"

fun	main()	{

		GreatApe(100.0,	12).info()	eq

				"wt:	100.0	age:	12"

		Bonobo(110.0,	13).info()	eq

				"wt:	110.0	age:	13"

		Chimpanzee(120.0,	14).info()	eq

				"wt:	120.0	age:	14"

		BonoboB(130.0,	15).info()	eq

				"wt:	130.0	age:	15"

}



When	inheriting	from	GreatApe,	you	must	pass	the	necessary	constructor
arguments	to	the	GreatApe	base	class,	otherwise	you’ll	get	a	compile-time	error
message.

After	Kotlin	creates	memory	for	your	object,	it	calls	the	base-class	constructor
first,	then	the	constructor	for	the	next-derived	class,	and	so	on	until	it	reaches	the
most-derived	constructor.	This	way,	all	constructor	calls	can	rely	on	the	validity
of	all	the	sub-objects	created	before	them.	Indeed,	those	are	the	only	things	it
knows	about;	a	Bonobo	knows	it	inherits	from	GreatApe	and	the	Bonobo
constructor	can	call	functions	in	the	GreatApe	class,	but	a	GreatApe	cannot
know	whether	it’s	a	Bonobo	or	a	Chimpanzee,	or	call	functions	specific	to	those
subclasses.

When	inheriting	from	a	class	you	must	provide	arguments	to	the	base-class
constructor	after	the	base	class	name.	This	calls	the	base-class	constructor	during
object	construction:

//	BaseClassInit/NoArgConstructor.kt

package	baseclassinit

open	class	SuperClass1(val	i:	Int)

class	SubClass1(i:	Int)	:	SuperClass1(i)

open	class	SuperClass2

class	SubClass2	:	SuperClass2()

When	there	are	no	base-class	constructor	parameters,	Kotlin	still	requires	empty
parentheses	after	the	base	class	name,	to	call	that	constructor	without	arguments.

If	there	are	secondary	constructors	in	the	base	class	you	may	call	one	of	those
instead:

//	BaseClassInit/House.kt

package	baseclassinit

import	atomictest.eq

open	class	House(

		val	address:	String,

		val	state:	String,

		val	zip:	String

)	{

		constructor(fullAddress:	String)	:

				this(fullAddress.substringBefore(",	"),

						fullAddress.substringAfter(",	")

								.substringBefore("	"),

						fullAddress.substringAfterLast("	"))

		val	fullAddress:	String

				get()	=	"$address,	$state	$zip"

}



class	VacationHouse(

		address:	String,

		state:	String,

		zip:	String,

		val	startMonth:	String,

		val	endMonth:	String

)	:	House(address,	state,	zip)	{

		override	fun	toString()	=

				"Vacation	house	at	$fullAddress	"	+

				"from	$startMonth	to	$endMonth"

}

class	TreeHouse(

		val	name:	String

)	:	House("Tree	Street,	TR	00000")	{

		override	fun	toString()	=

				"$name	tree	house	at	$fullAddress"

}

fun	main()	{

		val	vacationHouse	=	VacationHouse(

				address	=	"8	Target	St.",

				state	=	"KS",

				zip	=	"66632",

				startMonth	=	"May",

				endMonth	=	"September")

		vacationHouse	eq

				"Vacation	house	at	8	Target	St.,	"	+

				"KS	66632	from	May	to	September"

		TreeHouse("Oak")	eq

				"Oak	tree	house	at	Tree	Street,	TR	00000"

}

When	VacationHouse	inherits	from	House	it	passes	the	appropriate	arguments	to
the	primary	House	constructor.	It	also	adds	its	own	parameters	startMonth	and
endMonth—you	aren’t	limited	by	the	number,	type	or	order	of	the	parameters	in
the	base	class.	Your	only	responsibility	is	to	provide	the	correct	arguments	in	the
call	to	the	base-class	constructor.

You	call	an	overloaded	base-class	constructor	by	passing	the	matching
constructor	arguments	in	the	base-class	constructor	call.	You	see	this	in	the
definitions	of	VacationHouse	and	TreeHouse.	Each	calls	a	different	base-class
constructor.

Inside	a	secondary	constructor	of	a	derived	class	you	can	either	call	the	base-
class	constructor	or	a	different	derived-class	constructor:

//	BaseClassInit/OtherConstructors.kt

package	baseclassinit

import	atomictest.eq

open	class	Base(val	i:	Int)

class	Derived	:	Base	{



		constructor(i:	Int)	:	super(i)

		constructor()	:	this(9)

}

fun	main()	{

		val	d1	=	Derived(11)

		d1.i	eq	11

		val	d2	=	Derived()

		d2.i	eq	9

}

To	call	the	base-class	constructor,	use	the	super	keyword,	passing	the
constructor	arguments	as	if	it	is	a	function	call.	Use	this	to	call	another
constructor	of	the	same	class.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Abstract	Classes

An	abstract	class	is	like	an	ordinary	class	except	one	or	more	functions	or
properties	is	incomplete:	a	function	lacks	a	definition	or	a	property	is
declared	without	initialization.	An	interface	is	like	an	abstract	class	but
without	state.

You	must	use	the	abstract	modifier	to	mark	class	members	that	have	missing
definitions.	A	class	containing	abstract	functions	or	properties	must	also	be
marked	abstract.	Try	removing	any	of	the	abstract	modifiers	below	and	see
what	message	you	get:

//	Abstract/AbstractKeyword.kt

package	abstractclasses

abstract	class	WithProperty	{

		abstract	val	x:	Int

}

abstract	class	WithFunctions	{

		abstract	fun	f():	Int

		abstract	fun	g(n:	Double)

}

WithProperty	declares	x	with	no	initialization	value	(a	declaration	describes
something	without	providing	a	definition	to	create	storage	for	a	value	or	code	for
a	function).	If	there	isn’t	an	initializer,	Kotlin	requires	references	to	be	abstract,
and	expects	the	abstract	modifier	on	the	class.	Without	an	initializer,	Kotlin
cannot	infer	the	type,	so	it	also	requires	type	information	for	an	abstract
reference.

WithFunctions	declares	f()	and	g()	but	provides	no	function	definitions,	again
forcing	you	to	add	the	abstract	modifier	to	the	functions	and	the	containing
class.	If	you	don’t	give	a	return	type	for	the	function,	as	with	g(),	Kotlin
assumes	it	returns	Unit.

Abstract	functions	and	properties	must	somehow	exist	(be	made	concrete)	in	the
class	that	you	ultimately	create	from	the	abstract	class.



All	functions	and	properties	declared	in	an	interface	are	abstract	by	default,
which	makes	an	interface	similar	to	an	abstract	class.	When	an	interface	contains
a	function	or	property	declaration,	the	abstract	modifier	is	redundant	and	can
be	removed.	These	two	interfaces	are	equivalent:

//	Abstract/Redundant.kt

package	abstractclasses

interface	Redundant	{

		abstract	val	x:	Int

		abstract	fun	f():	Int

		abstract	fun	g(n:	Double)

}

interface	Removed	{

		val	x:	Int

		fun	f():	Int

		fun	g(n:	Double)

}

The	difference	between	interfaces	and	abstract	classes	is	that	an	abstract	class
can	contain	state,	while	an	interface	cannot.	State	is	the	data	stored	inside
properties.	In	the	following,	the	state	of	IntList	consists	of	the	values	stored	in
the	properties	name	and	list.

//	Abstract/StateOfAClass.kt

package	abstractstate

import	atomictest.eq

class	IntList(val	name:	String)	{

		val	list	=	mutableListOf<Int>()

}

fun	main()	{

		val	ints	=	IntList("numbers")

		ints.name	eq	"numbers"

		ints.list	+=	7

		ints.list	eq	listOf(7)

}

An	interface	may	declare	properties,	but	actual	data	is	only	stored	in	classes	that
implement	the	interface.	An	interface	isn’t	allowed	to	store	values	in	its
properties:

//	Abstract/NoStateInInterfaces.kt

package	abstractclasses

interface	IntList	{

		val	name:	String

		//	Doesn't	compile:

		//	val	list	=	listOf(0)

}



Both	interfaces	and	abstract	classes	can	contain	functions	with	implementations.
You	can	call	other	abstract	members	from	such	functions:

//	Abstract/Implementations.kt

package	abstractclasses

import	atomictest.eq

interface	Parent	{

		val	ch:	Char

		fun	f():	Int

		fun	g()	=	"ch	=	$ch;	f()	=	${f()}"

}

class	Actual(

		override	val	ch:	Char								//	[1]

):	Parent	{

		override	fun	f()	=	17								//	[2]

}

class	Other	:	Parent	{

		override	val	ch:	Char								//	[3]

				get()	=	'B'

		override	fun	f()	=	34								//	[4]

}

fun	main()	{

		Actual('A').g()	eq	"ch	=	A;	f()	=	17"	//	[5]

		Other().g()	eq	"ch	=	B;	f()	=	34"					//	[6]

}

Parent	declares	an	abstract	property	ch	and	an	abstract	function	f()	that	must	be
overridden	in	any	implementing	classes.	Lines	[1]-[4]	show	different
implementations	of	these	members	in	subclasses.

Parent.g()	uses	abstract	members	that	have	no	definitions	at	the	point	where
g()	is	defined.	Interfaces	and	abstract	classes	guarantee	that	all	abstract
properties	and	functions	are	implemented	before	any	objects	can	be	created—
and	you	can’t	call	a	member	function	unless	you’ve	got	an	object.	Lines	[5]	and
[6]	call	different	implementations	of	ch	and	f().

Because	an	interface	can	contain	function	implementations,	it	can	also	contain
custom	property	accessors	if	the	corresponding	property	doesn’t	change	state:

//	Abstract/PropertyAccessor.kt

package	abstractclasses

import	atomictest.eq

interface	PropertyAccessor	{

		val	a:	Int

				get()	=	11

}

class	Impl	:	PropertyAccessor



fun	main()	{

		Impl().a	eq	11

}

You	might	wonder	why	we	need	interfaces	when	abstract	classes	are	more
powerful.	To	understand	the	importance	of	“a	class	without	state,”	let’s	look	at
the	concept	of	multiple	inheritance,	which	Kotlin	doesn’t	support.	In	Kotlin,	a
class	can	only	inherit	from	a	single	base	class:

//	Abstract/NoMultipleInheritance.kt

package	multipleinheritance1

open	class	Animal

open	class	Mammal	:	Animal()

open	class	AquaticAnimal	:	Animal()

//	More	than	one	base	class	doesn't	compile:

//	class	Dolphin	:	Mammal(),	AquaticAnimal()

Trying	to	compile	the	commented	code	produces	an	error:	Only	one	class	may
appear	in	a	supertype	list.

Java	works	the	same	way.	The	original	Java	designers	decided	that	C++	multiple
inheritance	was	a	bad	idea.	The	main	complexity	and	dissatisfaction	at	that	time
came	from	multiple	state	inheritance.	The	rules	managing	inheritance	of
multiple	states	are	complicated	and	can	easily	cause	confusion	and	surprising
behavior.	Java	added	an	elegant	solution	to	this	problem	by	introducing
interfaces,	which	can’t	contain	state.	Java	forbids	multiple	state	inheritance,	but
allows	multiple	interface	inheritance,	and	Kotlin	follows	this	design:

//	Abstract/MultipleInterfaceInheritance.kt

package	multipleinheritance2

interface	Animal

interface	Mammal:	Animal

interface	AquaticAnimal:	Animal

class	Dolphin	:	Mammal,	AquaticAnimal

Note	that,	just	like	classes,	interfaces	can	inherit	from	each	other.

When	inheriting	from	several	interfaces,	it’s	possible	to	simultaneously	override
two	or	more	functions	with	the	same	signature	(the	name	combined	with	the
parameters	and	return	type).	If	function	or	property	signatures	collide,	you	must
resolve	the	collisions	by	hand,	as	seen	in	class	C:

//	Abstract/InterfaceCollision.kt

package	collision



import	atomictest.eq

interface	A	{

		fun	f()	=	1

		fun	g()	=	"A.g"

		val	n:	Double

				get()	=	1.1

}

interface	B	{

		fun	f()	=	2

		fun	g()	=	"B.g"

		val	n:	Double

				get()	=	2.2

}

class	C	:	A,	B	{

		override	fun	f()	=	0

		override	fun	g()	=	super<A>.g()

		override	val	n:	Double

				get()	=	super<A>.n	+	super<B>.n

}

fun	main()	{

		val	c	=	C()

		c.f()	eq	0

		c.g()	eq	"A.g"

		c.n	eq	3.3

}

The	functions	f()	and	g()	and	the	property	n	have	identical	signatures	in
interfaces	A	and	B,	so	Kotlin	doesn’t	know	what	to	do	and	produces	an	error
message	if	you	don’t	resolve	the	issue	(try	individually	commenting	the
definitions	in	C).	Member	functions	and	properties	can	be	overridden	with	new
definitions	as	in	f(),	but	functions	can	also	access	the	base	versions	of
themselves	using	the	super	keyword,	specifying	the	base	class	in	angle	brackets,
as	in	the	definition	of	C.g()	and	C.n.

Collisions	where	the	identifier	is	the	same	but	the	type	is	different	are	not
allowed	in	Kotlin	and	cannot	be	resolved.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Upcasting

Taking	an	object	reference	and	treating	it	as	a	reference	to	its	base	type	is
called	upcasting.	The	term	upcast	refers	to	the	way	inheritance	hierarchies
are	traditionally	represented	with	the	base	class	at	the	top	and	derived
classes	fanning	out	below.

Inheriting	and	adding	new	member	functions	is	the	practice	in	Smalltalk,	one	of
the	first	successful	object-oriented	languages.	In	Smalltalk,	everything	is	an
object	and	the	only	way	to	create	a	class	is	to	inherit	from	an	existing	class,	often
adding	new	member	functions.	Smalltalk	heavily	influenced	Java,	which	also
requires	everything	to	be	an	object.

Kotlin	frees	us	from	these	constraints.	We	have	stand-alone	functions	so
everything	doesn’t	need	to	be	contained	within	classes.	Extension	functions
allow	us	to	add	functionality	without	inheritance.	Indeed,	requiring	the	open
keyword	for	inheritance	makes	it	a	very	conscious	and	intentional	choice,	not
something	to	use	all	the	time.

More	precisely,	it	narrows	inheritance	to	a	very	specific	use,	an	abstraction	that
allows	us	to	write	code	that	can	be	reused	across	multiple	classes	within	a	single
hierarchy.	The	Polymorphism	atom	explores	these	mechanics,	but	first	you	must
understand	upcasting.

Consider	some	Shapes	that	can	be	drawn	and	erased:

//	Upcasting/Shapes.kt

package	upcasting

interface	Shape	{

		fun	draw():	String

		fun	erase():	String

}

class	Circle	:	Shape	{

		override	fun	draw()	=	"Circle.draw"

		override	fun	erase()	=	"Circle.erase"

}

class	Square	:	Shape	{

		override	fun	draw()	=	"Square.draw"

		override	fun	erase()	=	"Square.erase"



		fun	color()	=	"Square.color"

}

class	Triangle	:	Shape	{

		override	fun	draw()	=	"Triangle.draw"

		override	fun	erase()	=	"Triangle.erase"

		fun	rotate()	=	"Triangle.rotate"

}

The	show()	function	accepts	any	Shape:

//	Upcasting/Drawing.kt

package	upcasting

import	atomictest.*

fun	show(shape:	Shape)	{

		trace("Show:	${shape.draw()}")

}

fun	main()	{

		listOf(Circle(),	Square(),	Triangle())

				.forEach(::show)

		trace	eq	"""

				Show:	Circle.draw

				Show:	Square.draw

				Show:	Triangle.draw

		"""

}

In	main(),	show()	is	called	with	three	different	types:	Circle,	Square,	and
Triangle.	The	show()	parameter	is	of	the	base	class	Shape,	so	show()	accepts
all	three	types.	Each	of	those	types	is	treated	as	a	basic	Shape—we	say	that	the
specific	types	are	upcast	to	the	basic	type.

We	typically	draw	a	diagram	for	this	hierarchy	with	the	base	class	at	the	top:

Shape	Hierarchy

When	we	pass	a	Circle,	Square,	or	Triangle	as	an	argument	of	type	Shape	in
show(),	we	cast	up	this	inheritance	hierarchy.	In	the	process	of	upcasting,	we
lose	the	specific	information	about	whether	an	object	is	of	type	Circle,	Square,
or	Triangle.	In	each	case,	it	becomes	nothing	more	than	a	Shape	object.



Treating	a	specific	type	as	a	more	general	type	is	the	entire	point	of	inheritance.
The	mechanics	of	inheritance	exist	solely	to	fulfill	the	goal	of	upcasting	to	the
base	type.	Because	of	this	abstraction	(“everything	is	a	Shape”),	we	can	write	a
single	show()	function	instead	of	writing	one	for	every	type	of	element.
Upcasting	is	a	way	to	reuse	code	for	objects.

Indeed,	in	virtually	every	case	where	there’s	inheritance	without	upcasting,
inheritance	is	being	misused—it’s	unnecessary,	and	it	makes	the	code	needlessly
complicated.	This	misuse	is	the	reason	for	the	maxim:

Prefer	composition	to	inheritance.

If	the	point	of	inheritance	is	the	ability	to	substitute	a	derived	type	for	a	base
type,	what	happens	to	the	extra	member	functions:	color()	in	Square	and
rotate()	in	Triangle?

Substitutability,	also	called	the	Liskov	Substitution	Principle,	says	that,	after
upcasting,	the	derived	type	can	be	treated	exactly	like	the	base	type—no	more
and	no	less.	This	means	that	any	member	functions	added	to	the	derived	class
are,	in	effect,	“trimmed	off.”	They	still	exist,	but	because	they	are	not	part	of	the
base-class	interface,	they	are	unavailable	within	show():

//	Upcasting/TrimmedMembers.kt

package	upcasting

import	atomictest.*

fun	trim(shape:	Shape)	{

		trace(shape.draw())

		trace(shape.erase())

		//	Doesn't	compile:

		//	shape.color()				//	[1]

		//	shape.rotate()			//	[2]

}

fun	main()	{

		trim(Square())

		trim(Triangle())

		trace	eq	"""

				Square.draw

				Square.erase

				Triangle.draw

				Triangle.erase

		"""

}

You	can’t	call	color()	in	line	[1]	because	the	Square	instance	was	upcast	to	a
Shape,	and	you	can’t	call	rotate()	in	line	[2]	because	the	Triangle	instance	is



also	upcast	to	a	Shape.	The	only	member	functions	available	are	the	ones	that	are
common	to	all	Shapes—those	defined	in	the	base	type	Shape.

Note	that	the	same	applies	when	you	directly	assign	a	subtype	of	Shape	to	a
general	Shape.	The	specified	type	determines	the	available	members:

//	Upcasting/Assignment.kt

import	upcasting.*

fun	main()	{

		val	shape1:	Shape	=	Square()

		val	shape2:	Shape	=	Triangle()

		//	Doesn't	compile:

		//	shape1.color()

		//	shape2.rotate()

}

After	an	upcast,	you	can	only	call	members	of	the	base	type.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Polymorphism

Polymorphism	is	an	ancient	Greek	term	meaning	“many	forms.”	In
programming,	polymorphism	means	an	object	or	its	members	have	multiple
implementations.

Consider	a	simple	hierarchy	of	Pet	types.	The	Pet	class	says	that	all	Pets	can
speak().	Dog	and	Cat	override	the	speak()	member	function:

//	Polymorphism/Pet.kt

package	polymorphism

import	atomictest.eq

open	class	Pet	{

		open	fun	speak()	=	"Pet"

}

class	Dog	:	Pet()	{

		override	fun	speak()	=	"Bark!"

}

class	Cat	:	Pet()	{

		override	fun	speak()	=	"Meow"

}

fun	talk(pet:	Pet)	=	pet.speak()

fun	main()	{

		talk(Dog())	eq	"Bark!"					//	[1]

		talk(Cat())	eq	"Meow"						//	[2]

}

Notice	the	talk()	function	parameter.	When	passing	a	Dog	or	a	Cat	to	talk(),
the	specific	type	is	forgotten	and	becomes	a	plain	Pet—both	Dogs	and	Cats	are
upcast	to	Pet.	The	objects	are	now	treated	as	plain	Pets	so	shouldn’t	the	output
for	both	lines	[1]	and	[2]	be	"Pet"?

talk()	doesn’t	know	the	exact	type	of	Pet	it	receives.	Despite	that,	when	you
call	speak()	through	a	reference	to	the	base-class	Pet,	the	correct	subclass
implementation	is	called,	and	you	get	the	desired	behavior.

Polymorphism	occurs	when	a	parent	class	reference	contains	a	child	class
instance.	When	you	call	a	member	on	that	parent	class	reference,	polymorphism
produces	the	correct	overridden	member	from	the	child	class.



Connecting	a	function	call	to	a	function	body	is	called	binding.	Ordinarily,	you
don’t	think	much	about	binding	because	it	happens	statically,	at	compile	time.
With	polymorphism,	the	same	operation	must	behave	differently	for	different
types—but	the	compiler	cannot	know	in	advance	which	function	body	to	use.
The	function	body	must	be	determined	dynamically,	at	runtime,	using	dynamic
binding.	Dynamic	binding	is	also	called	late	binding	or	dynamic	dispatch.	Only
at	runtime	can	Kotlin	determine	the	exact	speak()	function	to	call.	Thus	we	say
that	the	binding	for	the	polymorphic	call	pet.speak()	occurs	dynamically.

Consider	a	fantasy	game.	Each	Character	in	the	game	has	a	name	and	can
play().	We	combine	Fighter	and	Magician	to	build	specific	characters:

//	Polymorphism/FantasyGame.kt

package	polymorphism

import	atomictest.*

abstract	class	Character(val	name:	String)	{

		abstract	fun	play():	String

}

interface	Fighter	{

		fun	fight()	=	"Fight!"

}

interface	Magician	{

		fun	doMagic()	=	"Magic!"

}

class	Warrior	:

		Character("Warrior"),	Fighter	{

		override	fun	play()	=	fight()

}

open	class	Elf(name:	String	=	"Elf")	:

		Character(name),	Magician	{

		override	fun	play()	=	doMagic()

}

class	FightingElf	:

		Elf("FightingElf"),	Fighter	{

		override	fun	play()	=

				super.play()	+	fight()

}

fun	Character.playTurn()	=													//	[1]

		trace(name	+	":	"	+	play())										//	[2]

fun	main()	{

		val	characters:	List<Character>	=	listOf(

				Warrior(),	Elf(),	FightingElf()

		)

		characters.forEach	{	it.playTurn()	}	//	[3]

		trace	eq	"""

				Warrior:	Fight!

				Elf:	Magic!

				FightingElf:	Magic!Fight!



		"""

}

In	main(),	each	object	is	upcast	to	Character	as	it	is	placed	into	the	List.	The
trace	shows	that	calling	playTurn()	on	each	Character	in	the	List	produces
different	output.

playTurn()	is	an	extension	function	on	the	base	type	Character.	When	called	in
line	[3],	it	is	statically	bound,	which	means	the	exact	function	to	be	called	is
determined	at	compile	time.	In	line	[3],	the	compiler	determines	that	there	is
only	one	playTurn()	function	implementation—the	one	defined	on	line	[1].

When	the	compiler	analyzes	the	play()	function	call	on	line	[2],	it	doesn’t	know
which	function	implementation	to	use.	If	the	Character	is	an	Elf,	it	must	call
Elf’s	play().	If	the	Character	is	a	FightingElf,	it	must	call	FightingElf’s
play().	It	might	also	need	to	call	a	function	from	an	as-yet-undefined	subclass.
The	function	binding	differs	from	invocation	to	invocation.	At	compile	time,	the
only	certainty	is	that	play()	on	line	[2]	is	a	member	function	of	one	of	the
Character	subclasses.	The	specific	subclass	can	only	be	known	at	runtime,
based	on	the	actual	Character	type.

-

Dynamic	binding	isn’t	free.	The	additional	logic	that	determines	the	runtime
type	slightly	impacts	performance	compared	to	static	binding.	To	force	clarity,
Kotlin	defaults	to	closed	classes	and	member	functions.	To	inherit	and	override,
you	must	be	explicit.

A	language	feature	such	as	the	when	statement	can	be	learned	in	isolation.
Polymorphism	cannot—it	only	works	in	concert,	as	part	of	the	larger	picture	of
class	relationships.	To	use	object-oriented	techniques	effectively,	you	must
expand	your	perspective	to	include	not	just	members	of	an	individual	class,	but
also	the	commonality	among	classes	and	their	relationships	with	each	other.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Composition

One	of	the	most	compelling	arguments	for	object-oriented	programming	is
code	reuse.

You	may	first	think	of	“reuse”	as	“copying	code.”	Copying	seems	like	an	easy
solution,	but	it	doesn’t	work	very	well.	As	time	passes,	your	needs	evolve.
Applying	changes	to	code	that’s	been	copied	is	a	maintenance	nightmare.	Did
you	find	all	the	copies?	Did	you	make	the	changes	the	same	way	for	each	copy?
Reused	code	can	be	changed	in	just	one	place.

In	object-oriented	programming	you	reuse	code	by	creating	new	classes,	but
instead	of	creating	them	from	scratch,	you	use	existing	classes	that	someone	has
already	built	and	debugged.	The	trick	is	to	use	the	classes	without	soiling	the
existing	code.

Inheritance	is	one	way	to	achieve	this.	Inheritance	creates	a	new	class	as	a	type
of	an	existing	class.	You	add	code	to	the	form	of	the	existing	class	without
modifying	the	original.	Inheritance	is	a	cornerstone	of	object-oriented
programming.

You	can	also	choose	a	more	straightforward	approach,	by	creating	objects	of
existing	classes	inside	your	new	class.	This	is	called	composition,	because	the
new	class	is	composed	of	objects	of	existing	classes.	You’re	reusing	the
functionality	of	the	code,	not	its	form.

Composition	is	used	frequently	in	this	book.	Composition	is	often	overlooked
because	it	seems	so	simple—you	just	put	an	object	inside	a	class.

Composition	is	a	has-a	relationship.	“A	house	is	a	building	and	has	a	kitchen”
can	be	expressed	like	this:

//	Composition/House1.kt

package	composition1

interface	Building

interface	Kitchen



interface	House:	Building	{

		val	kitchen:	Kitchen

}

Inheritance	describes	an	is-a	relationship,	and	it’s	often	helpful	to	read	the
description	aloud:	“A	house	is	a	building.”	That	sounds	right,	doesn’t	it?	When
the	is-a	relationship	makes	sense,	inheritance	usually	makes	sense.

If	your	house	has	two	kitchens,	composition	yields	an	easy	solution:

//	Composition/House2.kt

package	composition2

interface	Building

interface	Kitchen

interface	House:	Building	{

		val	kitchen1:	Kitchen

		val	kitchen2:	Kitchen

}

To	allow	any	number	of	kitchens,	use	composition	with	a	collection:

//	Composition/House3.kt

package	composition3

interface	Building

interface	Kitchen

interface	House:	Building	{

		val	kitchens:	List<Kitchen>

}

We	spend	time	and	effort	understanding	inheritance	because	it’s	more	complex,
and	that	complexity	might	give	the	impression	that	it’s	somehow	more
important.	On	the	contrary:

Prefer	composition	to	inheritance.

Composition	produces	simpler	designs	and	implementations.	This	doesn’t	mean
you	should	avoid	inheritance.	It’s	just	that	we	tend	to	get	bound	up	in	more
complicated	relationships.	The	maxim	prefer	composition	to	inheritance	is	a
reminder	to	step	back,	look	at	your	design,	and	wonder	whether	you	can	simplify
it	with	composition.	The	ultimate	goal	is	to	properly	apply	your	tools	and
produce	a	good	design.



Composition	appears	trivial,	but	is	powerful.	When	a	class	grows	and	becomes
responsible	for	different	unrelated	things,	composition	helps	pull	them	apart.	Use
composition	to	simplify	the	complicated	logic	of	a	class.

Choosing	Between	Composition	and	Inheritance
Both	composition	and	inheritance	put	subobjects	inside	your	new	class—
composition	has	explicit	subobjects	while	inheritance	has	implicit	subjobjects.
When	do	you	choose	one	over	the	other?

Composition	provides	the	functionality	of	an	existing	class,	but	not	its	interface.
You	embed	an	object	to	use	its	features	in	your	new	class,	but	the	user	sees	the
interface	you’ve	defined	for	that	new	class	rather	than	the	interface	of	the
embedded	object.	To	hide	the	object	completely,	embed	it	privately:

//	Composition/Embedding.kt

package	composition

class	Features	{

		fun	f1()	=	"feature1"

		fun	f2()	=	"feature2"

}

class	Form	{

		private	val	features	=	Features()

		fun	operation1()	=

				features.f2()	+	features.f1()

		fun	operation2()	=

				features.f1()	+	features.f2()

}

The	Features	class	provides	implementations	for	the	operations	of	Form,	but	the
client	programmer	who	uses	Form	has	no	access	to	features—indeed,	the	user	is
effectively	unaware	of	how	Form	is	implemented.	This	means	that	if	you	find	a
better	way	to	implement	Form,	you	can	remove	features	and	change	to	the	new
approach	without	any	impact	on	code	that	calls	Form.

If	Form	inherited	Features,	the	client	programmer	could	expect	to	upcast	Form	to
Features.	The	inheritance	relationship	is	then	part	of	Form—the	connection	is
explicit.	If	you	change	this,	you’ll	break	code	that	relies	upon	that	connection.

Sometimes	it	makes	sense	to	allow	the	class	user	to	directly	access	the
composition	of	your	new	class;	that	is,	to	make	the	member	objects	public.	This
is	relatively	safe,	assuming	the	member	objects	use	appropriate	implementation



hiding.	For	some	systems,	this	approach	can	make	the	interface	easier	to
understand.	Consider	a	Car:

//	Composition/Car.kt

package	composition

import	atomictest.*

class	Engine	{

		fun	start()	=	trace("Engine	start")

		fun	stop()	=	trace("Engine	stop")

}

class	Wheel	{

		fun	inflate(psi:	Int)	=

				trace("Wheel	inflate($psi)")

}

class	Window(val	side:	String)	{

		fun	rollUp()	=

				trace("$side	Window	roll	up")

		fun	rollDown()	=

				trace("$side	Window	roll	down")

}

class	Door(val	side:	String)	{

		val	window	=	Window(side)

		fun	open()	=	trace("$side	Door	open")

		fun	close()	=	trace("$side	Door	close")

}

class	Car	{

		val	engine	=	Engine()

		val	wheel	=	List(4)	{	Wheel()	}

		//	Two	door:

		val	leftDoor	=	Door("left")

		val	rightDoor	=	Door("right")

}

fun	main()	{

		val	car	=	Car()

		car.leftDoor.open()

		car.rightDoor.window.rollUp()

		car.wheel[0].inflate(72)

		car.engine.start()

		trace	eq	"""

				left	Door	open

				right	Window	roll	up

				Wheel	inflate(72)

				Engine	start

		"""

}

The	composition	of	a	Car	is	part	of	the	analysis	of	the	problem,	and	not	simply
part	of	the	underlying	implementation.	This	assists	the	client	programmer’s
understanding	of	how	to	use	the	class	and	requires	less	code	complexity	for	the
creator	of	the	class.



When	you	inherit,	you	create	a	custom	version	of	an	existing	class.	This	takes	a
general-purpose	class	and	specializes	it	for	a	particular	need.	In	this	example,	it
would	make	no	sense	to	compose	a	Car	using	an	object	of	a	Vehicle	class—a
Car	doesn’t	contain	a	Vehicle,	it	is	a	Vehicle.	The	is-a	relationship	is	expressed
with	inheritance,	and	the	has-a	relationship	is	expressed	with	composition.

The	cleverness	of	polymorphism	can	make	it	can	seem	that	everything	ought	to
be	inherited.	This	will	burden	your	designs.	In	fact,	if	you	choose	inheritance
first	when	you’re	using	an	existing	class	to	build	a	new	class,	things	can	become
needlessly	complicated.	A	better	approach	is	to	try	composition	first,	especially
when	it’s	not	obvious	which	approach	works	best.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Inheritance	&	Extensions

Inheritance	is	sometimes	used	to	add	functions	to	a	class	as	a	way	to	reuse
it	for	a	new	purpose.	This	can	lead	to	code	that	is	difficult	to	understand	and
maintain.

Suppose	someone	has	created	a	Heater	class	along	with	functions	that	act	upon	a
Heater:

//	InheritanceExtensions/Heater.kt

package	inheritanceextensions

import	atomictest.eq

open	class	Heater	{

		fun	heat(temperature:	Int)	=

				"heating	to	$temperature"

}

fun	warm(heater:	Heater)	{

		heater.heat(70)	eq	"heating	to	70"

}

For	the	sake	of	argument,	imagine	that	Heater	is	far	more	complex	than	this,	and
that	there	are	many	adjunct	functions	such	as	warm().	We	don’t	want	to	modify
this	library—we	want	to	reuse	it	as-is.

If	what	we	actually	want	is	an	HVAC	(Heating,	Ventilation	and	Air	Conditioning)
system,	we	can	inherit	Heater	and	add	a	cool()	function.	The	existing	warm()
function,	and	all	other	functions	that	act	upon	a	Heater,	still	work	with	our	new
HVAC	type—which	would	not	be	true	if	we	had	used	composition:

//	InheritanceExtensions/InheritAdd.kt

package	inheritanceextensions

import	atomictest.eq

class	HVAC	:	Heater()	{

		fun	cool(temperature:	Int)	=

				"cooling	to	$temperature"

}

fun	warmAndCool(hvac:	HVAC)	{

		hvac.heat(70)	eq	"heating	to	70"

		hvac.cool(60)	eq	"cooling	to	60"

}

fun	main()	{



		val	heater	=	Heater()

		val	hvac	=	HVAC()

		warm(heater)

		warm(hvac)

		warmAndCool(hvac)

}

This	seems	practical:	Heater	didn’t	do	everything	we	wanted,	so	we	inherited
HVAC	from	Heater	and	tacked	on	another	function.

As	you	saw	in	Upcasting,	object-oriented	languages	have	a	mechanism	to	deal
with	member	functions	added	during	inheritance:	the	added	functions	are
trimmed	off	during	upcasting	and	are	unavailable	to	the	base	class.	This	is	the
Liskov	Substitution	Principle,	aka	“Substitutability,”	which	says	functions	that
accept	a	base	class	must	be	able	to	use	objects	of	derived	classes	without
knowing	it.	Substitutability	is	why	warm()	still	works	on	an	HVAC.

Although	modern	OO	programming	allows	the	addition	of	functions	during
inheritance,	this	can	be	a	“code	smell”—it	appears	to	be	reasonable	and
expedient	but	can	lead	you	into	trouble.	Just	because	it	seems	to	work	doesn’t
mean	it’s	a	good	idea.	In	particular,	it	might	negatively	impact	a	later	maintainer
of	the	code	(which	might	be	you).	This	kind	of	problem	is	called	technical	debt.

Adding	functions	during	inheritance	can	be	useful	when	the	new	class	is
rigorously	treated	as	a	base	class	throughout	your	system,	ignoring	the	fact	that	it
has	its	own	bases.	In	Type	Checking	you’ll	see	more	examples	where	adding
functions	during	inheritance	can	be	a	viable	technique.

What	we	really	wanted	when	creating	the	HVAC	class	was	a	Heater	class	with	an
added	cool()	function	so	it	works	with	warmAndCool().	This	is	exactly	what	an
extension	function	does,	without	inheritance:

//	InheritanceExtensions/ExtensionFuncs.kt

package	inheritanceextensions2

import	inheritanceextensions.Heater

import	atomictest.eq

fun	Heater.cool(temperature:	Int)	=

		"cooling	to	$temperature"

fun	warmAndCool(heater:	Heater)	{

		heater.heat(70)	eq	"heating	to	70"

		heater.cool(60)	eq	"cooling	to	60"

}

fun	main()	{

		val	heater	=	Heater()



		warmAndCool(heater)

}

Instead	of	inheriting	to	extend	the	base	class	interface,	extension	functions
extend	the	base	class	interface	directly,	without	inheritance.

If	we	had	control	over	the	Heater	library,	we	could	design	it	differently,	to	be
more	flexible:

//	InheritanceExtensions/TemperatureDelta.kt

package	inheritanceextensions

import	atomictest.*

class	TemperatureDelta(

		val	current:	Double,

		val	target:	Double

)

fun	TemperatureDelta.heat()	{

		if	(current	<	target)

				trace("heating	to	$target")

}

fun	TemperatureDelta.cool()	{

		if	(current	>	target)

				trace("cooling	to	$target")

}

fun	adjust(deltaT:	TemperatureDelta)	{

		deltaT.heat()

		deltaT.cool()

}

fun	main()	{

		adjust(TemperatureDelta(60.0,	70.0))

		adjust(TemperatureDelta(80.0,	60.0))

		trace	eq	"""

				heating	to	70.0

				cooling	to	60.0

		"""

}

In	this	approach,	we	control	the	temperature	by	choosing	among	multiple
strategies.	We	could	also	have	made	heat()	and	cool()	member	functions
instead	of	extension	functions.

Interface	by	Convention
An	extension	function	can	be	thought	of	as	creating	an	interface	containing	a
single	function:

//	InheritanceExtensions/Convention.kt

package	inheritanceextensions



class	X

fun	X.f()	{}

class	Y

fun	Y.f()	{}

fun	callF(x:	X)	=	x.f()

fun	callF(y:	Y)	=	y.f()

fun	main()	{

		val	x	=	X()

		val	y	=	Y()

		x.f()

		y.f()

		callF(x)

		callF(y)

}

Both	X	and	Y	now	appear	to	have	a	member	function	called	f(),	but	we	don’t	get
polymorphic	behavior	so	we	must	overload	callF()	to	make	it	work	for	both
types.

This	“interface	by	convention”	is	used	extensively	in	the	Kotlin	libraries,
especially	when	dealing	with	collections.	Although	these	are	predominantly	Java
collections,	the	Kotlin	library	turns	them	into	functional-style	collections	by
adding	a	large	number	of	extension	functions.	For	example,	on	virtually	any
collection-like	object,	you	can	expect	to	find	map()	and	reduce(),	among	many
others.	Because	the	programmer	comes	to	expect	this	convention,	it	makes
programming	easier.

The	Kotlin	standard	library	Sequence	interface	contains	a	single	member
function.	The	other	Sequence	functions	are	all	extensions—there	are	well	over
one	hundred.	Initially,	this	approach	was	used	for	compatibility	with	Java
collections,	but	now	it’s	part	of	the	Kotlin	philosophy:	Create	a	simple	interface
containing	only	the	methods	that	define	its	essence,	then	create	all	auxiliary
operations	as	extensions.

The	Adapter	Pattern
A	library	often	defines	a	type	and	provides	functions	that	accept	parameters	of
that	type	and/or	return	that	type:

//	InheritanceExtensions/UsefulLibrary.kt

package	usefullibrary

interface	LibType	{
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		fun	f1()

		fun	f2()

}

fun	utility1(lt:	LibType)	{

		lt.f1()

		lt.f2()

}

fun	utility2(lt:	LibType)	{

		lt.f2()

		lt.f1()

}

To	use	this	library,	you	must	somehow	convert	your	existing	class	to	LibType.
Here,	we	inherit	from	an	existing	MyClass	to	produce	MyClassAdaptedForLib,
which	implements	LibType	and	can	thus	be	passed	to	the	functions	in
UsefulLibrary.kt:

//	InheritanceExtensions/Adapter.kt

package	inheritanceextensions

import	usefullibrary.*

import	atomictest.*

open	class	MyClass	{

		fun	g()	=	trace("g()")

		fun	h()	=	trace("h()")

}

fun	useMyClass(mc:	MyClass)	{

		mc.g()

		mc.h()

}

class	MyClassAdaptedForLib	:

		MyClass(),	LibType	{

		override	fun	f1()	=	h()

		override	fun	f2()	=	g()

}

fun	main()	{

		val	mc	=	MyClassAdaptedForLib()

		utility1(mc)

		utility2(mc)

		useMyClass(mc)

		trace	eq	"h()	g()	g()	h()	g()	h()"

}

Although	this	does	extend	a	class	during	inheritance,	the	new	member	functions
are	used	only	for	the	purpose	of	adapting	to	UsefulLibrary.	Note	that
everywhere	else,	objects	of	MyClassAdaptedForLib	can	be	treated	as	MyClass
objects,	as	in	the	call	to	useMyClass().	There’s	no	code	that	uses	the	extended
MyClassAdaptedForLib	where	users	of	the	base	class	must	know	about	the
derived	class.



Adapter.kt	relies	on	MyClass	being	open	for	inheritance.	What	if	you	don’t
control	MyClass	and	it’s	not	open?	Fortunately,	adapters	can	also	be	built	using
composition.	Here,	we	add	a	MyClass	field	inside	MyClassAdaptedForLib:

//	InheritanceExtensions/ComposeAdapter.kt

package	inheritanceextensions2

import	usefullibrary.*

import	atomictest.*

class	MyClass	{	//	Not	open

		fun	g()	=	trace("g()")

		fun	h()	=	trace("h()")

}

fun	useMyClass(mc:	MyClass)	{

		mc.g()

		mc.h()

}

class	MyClassAdaptedForLib	:	LibType	{

		val	field	=	MyClass()

		override	fun	f1()	=	field.h()

		override	fun	f2()	=	field.g()

}

fun	main()	{

		val	mc	=	MyClassAdaptedForLib()

		utility1(mc)

		utility2(mc)

		useMyClass(mc.field)

		trace	eq	"h()	g()	g()	h()	g()	h()"

}

This	is	not	quite	as	clean	as	Adapter.kt—you	must	explicitly	access	the
MyClass	object	as	seen	in	the	call	to	useMyClass(mc.field).	But	it	still	handily
solves	the	problem	of	adapting	to	a	library.

Extension	functions	seem	like	they	might	be	very	useful	for	creating	adapters.
Unfortunately,	you	cannot	implement	an	interface	by	collecting	extension
functions.

Members	versus	Extensions
There	are	cases	where	you	are	forced	to	use	member	functions	rather	than
extensions.	If	a	function	must	access	a	private	member,	you	have	no	choice	but
to	make	it	a	member	function:

//	InheritanceExtensions/PrivateAccess.kt

package	inheritanceextensions

import	atomictest.eq

class	Z(var	i:	Int	=	0)	{

		private	var	j	=	0



		fun	increment()	{

				i++

				j++

		}

}

fun	Z.decrement()	{

		i--

		//	j	--	//	Cannot	access

}

The	member	function	increment()	can	manipulate	j,	but	the	extension	function
decrement()	doesn’t	have	access	to	j	because	j	is	private.

The	most	significant	limitation	to	extension	functions	is	that	they	cannot	be
overridden:

//	InheritanceExtensions/NoExtOverride.kt

package	inheritanceextensions

import	atomictest.*

open	class	Base	{

		open	fun	f()	=	"Base.f()"

}

class	Derived	:	Base()	{

		override	fun	f()	=	"Derived.f()"

}

fun	Base.g()	=	"Base.g()"

fun	Derived.g()	=	"Derived.g()"

fun	useBase(b:	Base)	{

		trace("Received	${b::class.simpleName}")

		trace(b.f())

		trace(b.g())

}

fun	main()	{

		useBase(Base())

		useBase(Derived())

		trace	eq	"""

				Received	Base

				Base.f()

				Base.g()

				Received	Derived

				Derived.f()

				Base.g()

		"""

}

The	trace	output	shows	that	polymorphism	works	with	the	member	function
f()	but	not	the	extension	function	g().

When	a	function	doesn’t	need	overriding	and	you	have	adequate	access	to	the
members	of	a	class,	you	can	define	it	as	either	a	member	function	or	an



extension	function—a	stylistic	choice	that	should	maximize	code	clarity.

A	member	function	reflects	the	essence	of	a	type;	you	can’t	imagine	the	type
without	that	function.	Extension	functions	indicate	“auxiliary”	or	“convenience”
operations	that	support	or	utilize	the	type,	but	are	not	necessarily	essential	to	that
type’s	existence.	Including	auxiliary	functions	inside	a	type	makes	it	harder	to
reason	about,	while	defining	some	functions	as	extensions	keeps	the	type	clean
and	simple.

Consider	a	Device	interface.	The	model	and	productionYear	properties	are
intrinsic	to	Device	because	they	describe	key	features.	Functions	like
overpriced()	and	outdated()	can	be	defined	either	as	members	of	the	interface
or	as	extension	functions.	Here	they	are	member	functions:

//	InheritanceExtensions/DeviceMembers.kt

package	inheritanceextensions1

import	atomictest.eq

interface	Device	{

		val	model:	String

		val	productionYear:	Int

		fun	overpriced()	=	model.startsWith("i")

		fun	outdated()	=	productionYear	<	2050

}

class	MyDevice(

		override	val	model:	String,

		override	val	productionYear:	Int

):	Device

fun	main()	{

		val	gadget:	Device	=

				MyDevice("my	first	phone",	2000)

		gadget.outdated()	eq	true

		gadget.overpriced()	eq	false

}

If	we	assume	overpriced()	and	outdated()	will	not	be	overridden	in
subclasses,	they	can	be	defined	as	extensions:

//	InheritanceExtensions/DeviceExtensions.kt

package	inheritanceextensions2

import	atomictest.eq

interface	Device	{

		val	model:	String

		val	productionYear:	Int

}

fun	Device.overpriced()	=

		model.startsWith("i")

fun	Device.outdated()	=



		productionYear	<	2050

class	MyDevice(

		override	val	model:	String,

		override	val	productionYear:	Int

):	Device

fun	main()	{

		val	gadget:	Device	=

				MyDevice("my	first	phone",	2000)

		gadget.outdated()	eq	true

		gadget.overpriced()	eq	false

}

Interfaces	that	only	contain	descriptive	members	are	easier	to	comprehend	and
reason	about,	so	the	Device	interface	in	the	second	example	is	probably	a	better
choice.	Ultimately,	however,	it’s	a	design	decision.

-

Languages	like	C++	and	Java	allow	inheritance	unless	you	specifically	disallow
it.	Kotlin	assumes	that	you	won’t	be	using	inheritance—it	actively	prevents
inheritance	and	polymorphism	unless	they	are	intentionally	allowed	using	the
open	keyword.	This	provides	insight	into	Kotlin’s	orientation:

Often,	functions	are	all	you	need.	Sometimes	objects	are	very	useful.
Objects	are	one	tool	among	many,	but	they’re	not	for	everything.

If	you’re	pondering	how	to	use	inheritance	in	a	particular	situation,	consider
whether	you	need	inheritance	at	all,	and	apply	the	maxim	Prefer	extension
functions	and	composition	to	inheritance	(modified	from	the	book	Design
Patterns).

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.

https://en.wikipedia.org/wiki/Design_Patterns


Class	Delegation

Both	composition	and	inheritance	place	subobjects	inside	your	new	class.
With	composition	the	subobject	is	explicit	and	with	inheritance	it	is
implicit.

Composition	uses	the	functionality	of	an	embedded	object	but	does	not	expose
its	interface.	For	a	class	to	reuse	an	existing	implementation	and	implement	its
interface,	you	have	two	options:	inheritance	and	class	delegation.

Class	delegation	is	midway	between	inheritance	and	composition.	Like
composition,	you	place	a	member	object	in	the	class	you’re	building.	Like
inheritance,	class	delegation	exposes	the	interface	of	the	subobject.	In	addition,
you	can	upcast	to	the	member	type.	For	code	reuse,	class	delegation	makes
composition	as	powerful	as	inheritance.

How	would	you	achieve	this	without	language	support?	Here,	a	spaceship	needs
a	control	module:

//	ClassDelegation/SpaceShipControls.kt

package	classdelegation

interface	Controls	{

		fun	up(velocity:	Int):	String

		fun	down(velocity:	Int):	String

		fun	left(velocity:	Int):	String

		fun	right(velocity:	Int):	String

		fun	forward(velocity:	Int):	String

		fun	back(velocity:	Int):	String

		fun	turboBoost():	String

}

class	SpaceShipControls	:	Controls	{

		override	fun	up(velocity:	Int)	=

				"up	$velocity"

		override	fun	down(velocity:	Int)	=

				"down	$velocity"

		override	fun	left(velocity:	Int)	=

				"left	$velocity"

		override	fun	right(velocity:	Int)	=

				"right	$velocity"

		override	fun	forward(velocity:	Int)	=

				"forward	$velocity"

		override	fun	back(velocity:	Int)	=

				"back	$velocity"



		override	fun	turboBoost()	=	"turbo	boost"

}

If	we	want	to	expand	the	functionality	of	the	controls	or	adjust	some	commands,
we	might	try	inheriting	from	SpaceShipControls.	This	doesn’t	work	because
SpaceShipControls	is	not	open.

To	expose	the	member	functions	in	Controls,	you	can	create	an	instance	of
SpaceShipControls	as	a	property	and	explicitly	delegate	all	the	exposed
member	functions	to	that	instance:

//	ClassDelegation/ExplicitDelegation.kt

package	classdelegation

import	atomictest.eq

class	ExplicitControls	:	Controls	{

		private	val	controls	=	SpaceShipControls()

		//	Delegation	by	hand:

		override	fun	up(velocity:	Int)	=

				controls.up(velocity)

		override	fun	back(velocity:	Int)	=

				controls.back(velocity)

		override	fun	down(velocity:	Int)	=

				controls.down(velocity)

		override	fun	forward(velocity:	Int)	=

				controls.forward(velocity)

		override	fun	left(velocity:	Int)	=

				controls.left(velocity)

		override	fun	right(velocity:	Int)	=

				controls.right(velocity)

		//	Modified	implementation:

		override	fun	turboBoost():	String	=

				controls.turboBoost()	+	"...	boooooost!"

}

fun	main()	{

		val	controls	=	ExplicitControls()

		controls.forward(100)	eq	"forward	100"

		controls.turboBoost()	eq

				"turbo	boost...	boooooost!"

}

The	functions	are	forwarded	to	the	underlying	controls	object,	and	the	resulting
interface	is	the	same	as	if	you	had	used	regular	inheritance.	You	can	also	provide
implementation	changes,	as	with	turboBoost().

Kotlin	automates	the	process	of	class	delegation,	so	instead	of	writing	explicit
function	implementations	as	in	ExplicitDelegation.kt,	you	specify	an	object
to	use	as	a	delegate.

To	delegate	to	a	class,	place	the	by	keyword	after	the	interface	name,	followed
by	the	member	property	to	use	as	the	delegate:



//	ClassDelegation/BasicDelegation.kt

package	classdelegation

interface	AI

class	A	:	AI

class	B(val	a:	A)	:	AI	by	a

Read	this	as	“class	B	implements	interface	AI	by	using	the	a	member	object.”
You	can	only	delegate	to	interfaces,	so	you	can’t	say	A	by	a.	The	delegate	object
(a)	must	be	a	constructor	argument.

ExplicitDelegation.kt	can	now	be	rewritten	using	by:

//	ClassDelegation/DelegatedControls.kt

package	classdelegation

import	atomictest.eq

class	DelegatedControls(

		private	val	controls:	SpaceShipControls	=

				SpaceShipControls()

):	Controls	by	controls	{

		override	fun	turboBoost():	String	=

				"${controls.turboBoost()}...	boooooost!"

}

fun	main()	{

		val	controls	=	DelegatedControls()

		controls.forward(100)	eq	"forward	100"

		controls.turboBoost()	eq

				"turbo	boost...	boooooost!"

}

When	Kotlin	sees	the	by	keyword,	it	generates	code	similar	to	what	we	wrote	for
ExplicitDelegation.kt.	After	delegation,	the	functions	of	the	member	object
are	accessible	via	the	outer	object,	but	without	writing	all	that	extra	code.

Kotlin	doesn’t	support	multiple	class	inheritance,	but	you	can	simulate	it	using
class	delegation.	In	general,	multiple	inheritance	is	used	to	combine	classes	that
have	completely	different	functionality.	For	example,	suppose	you	want	to
produce	a	button	by	combining	a	class	that	draws	a	rectangle	on	the	screen	with
a	class	that	manages	mouse	events:

//	ClassDelegation/ModelingMI.kt

package	classdelegation

import	atomictest.eq

interface	Rectangle	{

		fun	paint():	String

}

class	ButtonImage(

		val	width:	Int,



		val	height:	Int

):	Rectangle	{

		override	fun	paint()	=

				"painting	ButtonImage($width,	$height)"

}

interface	MouseManager	{

		fun	clicked():	Boolean

		fun	hovering():	Boolean

}

class	UserInput	:	MouseManager	{

		override	fun	clicked()	=	true

		override	fun	hovering()	=	true

}

//	Even	if	we	make	the	classes	open,	we

//	get	an	error	because	only	one	class	may

//	appear	in	a	supertype	list:

//	class	Button	:	ButtonImage(),	UserInput()

class	Button(

		val	width:	Int,

		val	height:	Int,

		var	image:	Rectangle	=

				ButtonImage(width,	height),

		private	var	input:	MouseManager	=	UserInput()

):	Rectangle	by	image,	MouseManager	by	input

fun	main()	{

		val	button	=	Button(10,	5)

		button.paint()	eq

				"painting	ButtonImage(10,	5)"

		button.clicked()	eq	true

		button.hovering()	eq	true

		//	Can	upcast	to	both	delegated	types:

		val	rectangle:	Rectangle	=	button

		val	mouseManager:	MouseManager	=	button

}

The	class	Button	implements	two	interfaces:	Rectangle	and	MouseManager.	It
can’t	inherit	from	implementations	of	both	ButtonImage	and	UserInput,	but	it
can	delegate	to	both	of	them.

Notice	that	the	definition	for	image	in	the	constructor	argument	list	is	both
public	and	a	var.	This	allows	the	client	programmer	to	dynamically	replace	the
ButtonImage.

The	last	two	lines	in	main()	show	that	a	Button	can	be	upcast	to	both	of	its
delegated	types.	This	was	the	goal	of	multiple	inheritance,	so	delegation
effectively	solves	the	need	for	multiple	inheritance.

-



Inheritance	can	be	constraining.	For	example,	you	cannot	inherit	a	class	when
the	superclass	is	not	open,	or	if	your	new	class	is	already	extending	another
class.	Class	delegation	releases	you	from	these	and	other	limitations.

Use	class	delegation	with	care.	Among	the	three	choices—inheritance,
composition	and	class	delegation—try	composition	first.	It’s	the	simplest
approach	and	solves	the	majority	of	use	cases.	Inheritance	is	necessary	when	you
need	a	hierarchy	of	types,	to	create	relationships	between	those	types.	Class
delegation	can	work	when	those	options	don’t.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Downcasting

Downcasting	discovers	the	specific	type	of	a	previously-upcast	object.

Upcasts	are	always	safe	because	the	base	class	cannot	have	a	bigger	interface
than	the	derived	class.	Every	base-class	member	is	guaranteed	to	exist	and	is
therefore	safe	to	call.	Although	object-oriented	programming	is	primarily
focused	on	upcasting,	there	are	situations	where	downcasting	can	be	a	useful	and
expedient	approach.

Downcasting	happens	at	runtime,	and	is	also	called	run-time	type	identification
(RTTI).

Consider	a	class	hierarchy	where	the	base	type	has	a	narrower	interface	than	the
derived	types.	If	you	upcast	an	object	to	the	base	type,	the	compiler	no	longer
knows	the	specific	type.	In	particular,	it	cannot	know	what	extended	functions
are	safe	to	call:

//	DownCasting/NarrowingUpcast.kt

package	downcasting

interface	Base	{

		fun	f()

}

class	Derived1	:	Base	{

		override	fun	f()	{}

		fun	g()	{}

}

class	Derived2	:	Base	{

		override	fun	f()	{}

		fun	h()	{}

}

fun	main()	{

		val	b1:	Base	=	Derived1()	//	Upcast

		b1.f()				//	Part	of	Base

		//	b1.g()	//	Not	part	of	Base

		val	b2:	Base	=	Derived2()	//	Upcast

		b2.f()				//	Part	of	Base

		//	b2.h()	//	Not	part	of	Base

}



To	solve	this	problem,	there	must	be	some	way	to	guarantee	that	a	downcast	is
correct,	so	you	don’t	accidentally	cast	to	the	wrong	type	and	call	a	non-existent
member.

Smart	Casts
Smart	casts	in	Kotlin	are	automatic	downcasts.	The	is	keyword	checks	whether
an	object	is	a	particular	type.	Any	code	within	the	scope	of	that	check	assumes
that	it	is	that	type:

//	DownCasting/IsKeyword.kt

import	downcasting.*

fun	main()	{

		val	b1:	Base	=	Derived1()	//	Upcast

		if(b1	is	Derived1)

				b1.g()	//	Within	scope	of	"is"	check

		val	b2:	Base	=	Derived2()	//	Upcast

		if(b2	is	Derived2)

				b2.h()	//	Within	scope	of	"is"	check

}

If	b1	is	of	type	Derived1,	you	can	call	g().	If	b2	is	of	type	Derived2,	you	can
call	h().

Smart	casts	are	especially	useful	inside	when	expressions	that	use	is	to	search	for
the	type	of	the	when	argument.	Note	that,	in	main(),	each	specific	type	is	first
upcast	to	a	Creature,	then	passed	to	what():

//	DownCasting/Creature.kt

package	downcasting

import	atomictest.eq

interface	Creature

class	Human	:	Creature	{

		fun	greeting()	=	"I'm	Human"

}

class	Dog	:	Creature	{

		fun	bark()	=	"Yip!"

}

class	Alien	:	Creature	{

		fun	mobility()	=	"Three	legs"

}

fun	what(c:	Creature):	String	=

		when	(c)	{

				is	Human	->	c.greeting()

				is	Dog	->	c.bark()

				is	Alien	->	c.mobility()

				else	->	"Something	else"

		}



fun	main()	{

		val	c:	Creature	=	Human()

		what(c)	eq	"I'm	Human"

		what(Dog())	eq	"Yip!"

		what(Alien())	eq	"Three	legs"

		class	Who	:	Creature

		what(Who())	eq	"Something	else"

}

In	main(),	upcasting	happens	when	assigning	a	Human	to	Creature,	passing	a
Dog	to	what(),	passing	an	Alien	to	what(),	and	passing	a	Who	to	what().

Class	hierarchies	are	traditionally	drawn	with	the	base	class	at	the	top	and
derived	classes	fanning	down	below	it.	what()	takes	a	previously-upcast
Creature	and	discovers	its	exact	type,	thus	casting	that	Creature	object	down
the	inheritance	hierarchy,	from	the	more-general	base	class	to	a	more-specific
derived	class.

A	when	expression	that	produces	a	value	requires	an	else	branch	to	capture	all
remaining	possibilities.	In	main(),	the	else	branch	is	tested	using	an	instance	of
the	local	class	Who.

Each	branch	of	the	when	uses	c	as	if	it	is	the	type	we	checked	for:	calling
greeting()	if	c	is	Human,	bark()	if	it’s	a	Dog	and	mobility()	if	it’s	an	Alien.

The	Modifiable	Reference
Automatic	downcasts	are	subject	to	a	special	constraint.	If	the	base-class
reference	to	the	object	is	modifiable	(a	var),	then	there’s	a	possibility	that	this
reference	could	be	assigned	to	a	different	object	between	the	instant	that	the	type
is	detected	and	the	instant	when	you	call	specific	functions	on	the	downcast
object.	That	is,	the	specific	type	of	the	object	might	change	between	type
detection	and	use.

In	the	following,	c	is	the	argument	to	when,	and	Kotlin	insists	that	this	argument
be	immutable	so	that	it	cannot	change	between	the	is	expression	and	the	call
made	after	the	->:

//	DownCasting/MutableSmartCast.kt

package	downcasting

class	SmartCast1(val	c:	Creature)	{

		fun	contact()	{

				when	(c)	{

						is	Human	->	c.greeting()



						is	Dog	->	c.bark()

						is	Alien	->	c.mobility()

				}

		}

}

class	SmartCast2(var	c:	Creature)	{

		fun	contact()	{

				when	(val	c	=	c)	{											//	[1]

						is	Human	->	c.greeting()			//	[2]

						is	Dog	->	c.bark()

						is	Alien	->	c.mobility()

				}

		}

}

The	c	constructor	argument	is	a	val	in	SmartCast1	and	a	var	in	SmartCast2.	In
both	cases	c	is	passed	into	the	when	expression,	which	uses	a	series	of	smart
casts.

In	[1],	the	expression	val	c	=	c	looks	odd,	and	only	used	here	for	convenience
—we	don’t	recommend	“shadowing”	identifier	names	in	normal	code.	val	c
creates	a	new	local	identifier	c	that	captures	the	value	of	the	property	c.
However,	the	property	c	is	a	var	while	the	local	(shadowed)	c	is	a	val.	Try
removing	the	val	c	=.	This	means	that	the	c	will	now	be	the	property,	which	is
a	var.	This	produces	an	error	message	for	line	[2]:

Smart	cast	to	‘Human’	is	impossible,	because	‘c’	is	a	mutable	property	that
could	have	been	changed	by	this	time

is	Dog	and	is	Alien	produce	similar	messages.	This	is	not	limited	to	while
expressions;	there	are	other	situations	that	can	produce	the	same	error	message.

The	change	described	in	the	error	message	typically	happens	through
concurrency,	when	multiple	independent	tasks	have	the	opportunity	to	change	c
at	unpredictable	times.	(Concurrency	is	an	advanced	topic	that	we	do	not	cover
in	this	book).

Kotlin	forces	us	to	ensure	that	c	will	not	change	from	the	time	that	the	is	check
is	performed	and	the	time	that	c	is	used	as	the	downcast	type.	SmartCast1	does
this	by	making	the	c	property	a	val,	and	SmartCast2	does	it	by	introducing	the
local	val	c.

Similarly,	complex	expressions	cannot	be	smart-cast	because	the	expression
might	be	re-evaluated.	Properties	that	are	open	for	inheritance	can’t	be	smart-



cast	because	their	value	might	be	overridden	in	subclasses,	so	there’s	no
guarantee	the	value	will	be	the	same	on	the	next	access.

The	as	Keyword
The	as	keyword	forcefully	casts	a	general	type	to	a	specific	type:

//	DownCasting/Unsafe.kt

package	downcasting

import	atomictest.*

fun	dogBarkUnsafe(c:	Creature)	=

		(c	as	Dog).bark()

fun	dogBarkUnsafe2(c:	Creature):	String	{

		c	as	Dog

		c.bark()

		return	c.bark()	+	c.bark()

}

fun	main()	{

		dogBarkUnsafe(Dog())	eq	"Yip!"

		dogBarkUnsafe2(Dog())	eq	"Yip!Yip!"

		(capture	{

				dogBarkUnsafe(Human())

		})	contains	listOf("ClassCastException")

}

dogBarkUnsafe2()	shows	a	second	form	of	as:	if	you	say	c	as	Dog,	then	c	is
treated	as	a	Dog	throughout	the	rest	of	the	scope.

A	failing	as	cast	throws	a	ClassCastException.	A	plain	as	is	called	an	unsafe
cast.

When	a	safe	cast	as?	fails,	it	doesn’t	throw	an	exception,	but	instead	returns
null.	You	must	then	do	something	reasonable	with	that	null	to	prevent	a	later
NullPointerException.	The	Elvis	operator	(described	in	Safe	Calls	&	the	Elvis
Operator)	is	usually	the	most	straightforward	approach:

//	DownCasting/Safe.kt

package	downcasting

import	atomictest.eq

fun	dogBarkSafe(c:	Creature)	=

		(c	as?	Dog)?.bark()	?:	"Not	a	Dog"

fun	main()	{

		dogBarkSafe(Dog())	eq	"Yip!"

		dogBarkSafe(Human())	eq	"Not	a	Dog"

}



If	c	is	not	a	Dog,	as?	produces	a	null.	Thus,	(c	as?	Dog)	is	a	nullable
expression	and	we	must	use	the	safe	call	operator	?.	to	call	bark().	If	as?
produces	a	null,	then	the	whole	expression	(c	as?	Dog)?.bark()	will	also
produce	a	null,	which	the	Elvis	operator	handles	by	producing	"Not	a	Dog".

Discovering	Types	in	Lists
When	used	in	a	predicate,	is	finds	objects	of	a	given	type	within	a	List,	or	any
iterable	(something	you	can	iterate	through):

//	DownCasting/FindType.kt

package	downcasting

import	atomictest.eq

val	group:	List<Creature>	=	listOf(

		Human(),	Human(),	Dog(),	Alien(),	Dog()

)

fun	main()	{

		val	dog	=	group

				.find	{	it	is	Dog	}	as	Dog?				//	[1]

		dog?.bark()	eq	"Yip!"												//	[2]

}

Because	group	contains	Creatures,	find()	returns	a	Creature.	We	want	to	treat
it	as	a	Dog,	so	we	explicitly	cast	it	at	the	end	of	line	[1].	There	might	be	zero	Dogs
in	group,	in	which	case	find()	returns	a	null	so	we	must	cast	the	result	to	a
nullable	Dog?.	Because	dog	is	nullable,	we	use	the	safe	call	operator	in	line	[2].

You	can	usually	avoid	the	code	in	line	[1]	by	using	filterIsInstance(),	which
produces	all	elements	of	a	specific	type:

//	DownCasting/FilterIsInstance.kt

import	downcasting.*

import	atomictest.eq

fun	main()	{

		val	humans1:	List<Creature>	=

				group.filter	{	it	is	Human	}

		humans1.size	eq	2

		val	humans2:	List<Human>	=

				group.filterIsInstance<Human>()

		humans2	eq	humans1

}

filterIsInstance()	is	a	more	readable	way	to	produce	the	same	result	as
filter().	However,	the	result	types	are	different:	while	filter()	returns	a	List
of	Creature	(even	though	all	the	resulting	elements	are	Human),



filterIsInstance()	returns	a	list	of	the	target	type	Human.	We’ve	also
eliminated	the	nullability	issues	seen	in	FindType.kt.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Sealed	Classes

To	constrain	a	class	hierarchy,	declare	the	superclass	sealed.

Consider	a	trip	taken	by	travelers	using	different	modes	of	transportation:

//	SealedClasses/UnSealed.kt

package	withoutsealedclasses

import	atomictest.eq

open	class	Transport

data	class	Train(

		val	line:	String

):	Transport()

data	class	Bus(

		val	number:	String,

		val	capacity:	Int

):	Transport()

fun	travel(transport:	Transport)	=

		when	(transport)	{

				is	Train	->

						"Train	${transport.line}"

				is	Bus	->

						"Bus	${transport.number}:	"	+

						"size	${transport.capacity}"

				else	->	"$transport	is	in	limbo!"

		}

fun	main()	{

		listOf(Train("S1"),	Bus("11",	90))

				.map(::travel)	eq

				"[Train	S1,	Bus	11:	size	90]"

}

Train	and	Bus	each	contain	different	details	about	their	Transport	mode.

travel()	contains	a	when	expression	that	discovers	the	exact	type	of	the
transport	parameter.	Kotlin	requires	the	default	else	branch,	because	there
might	be	other	subclasses	of	Transport.

travel()	shows	downcasting’s	inherent	trouble	spot.	Suppose	you	inherit	Tram
as	a	new	type	of	Transport.	If	you	do	this,	travel()	continues	to	compile	and
run,	giving	you	no	clue	that	you	should	modify	it	to	detect	Tram.	If	you	have



many	instances	of	downcasting	scattered	throughout	your	code,	this	becomes	a
maintenance	challenge.

We	can	improve	the	situation	using	the	sealed	keyword.	When	defining
Transport,	replace	open	class	with	sealed	class:

//	SealedClasses/SealedClasses.kt

package	sealedclasses

import	atomictest.eq

sealed	class	Transport

data	class	Train(

		val	line:	String

)	:	Transport()

data	class	Bus(

		val	number:	String,

		val	capacity:	Int

)	:	Transport()

fun	travel(transport:	Transport)	=

		when	(transport)	{

				is	Train	->

						"Train	${transport.line}"

				is	Bus	->

						"Bus	${transport.number}:	"	+

						"size	${transport.capacity}"

		}

fun	main()	{

		listOf(Train("S1"),	Bus("11",	90))

				.map(::travel)	eq

				"[Train	S1,	Bus	11:	size	90]"

}

All	direct	subclasses	of	a	sealed	class	must	be	located	in	the	same	file	as	the
base	class.

Although	Kotlin	forces	you	to	exhaustively	check	all	possible	types	in	a	when
expression,	the	when	in	travel()	no	longer	requires	an	else	branch.	Because
Transport	is	sealed,	Kotlin	knows	that	no	additional	subclasses	of	Transport
exist	other	than	the	ones	present	in	this	file.	The	when	expression	is	now
exhaustive	without	an	else	branch.

sealed	hierarchies	discover	errors	when	adding	new	subclasses.	When	you
introduce	a	new	subclass,	you	must	update	all	the	code	that	uses	the	existing
hierarchy.	The	travel()	function	in	UnSealed.kt	will	continue	to	work	because
the	else	branch	produces	"$transport	is	in	limbo!"	on	unknown	types	of
transportation.	However,	that’s	probably	not	the	behavior	you	want.



A	sealed	class	reveals	all	the	places	to	modify	when	we	add	a	new	subclass	such
as	Tram.	The	travel()	function	in	SealedClasses.kt	won’t	compile	if	we
introduce	the	Tram	class	without	making	additional	changes.	The	sealed
keyword	makes	it	impossible	to	ignore	the	problem,	because	you	get	a
compilation	error.

The	sealed	keyword	makes	downcasting	more	palatable,	but	you	should	still	be
suspicious	of	designs	that	make	excessive	use	of	downcasting.	There	is	often	a
better	and	cleaner	way	to	write	that	code	using	polymorphism.

sealed	vs.	abstract
Here	we	show	that	both	abstract	and	sealed	classes	allow	identical	types	of
functions,	properties,	and	constructors:

//	SealedClasses/SealedVsAbstract.kt

package	sealedclasses

abstract	class	Abstract(val	av:	String)	{

		open	fun	concreteFunction()	{}

		open	val	concreteProperty	=	""

		abstract	fun	abstractFunction():	String

		abstract	val	abstractProperty:	String

		init	{}

		constructor(c:	Char)	:	this(c.toString())

}

open	class	Concrete()	:	Abstract("")	{

		override	fun	concreteFunction()	{}

		override	val	concreteProperty	=	""

		override	fun	abstractFunction()	=	""

		override	val	abstractProperty	=	""

}

sealed	class	Sealed(val	av:	String)	{

		open	fun	concreteFunction()	{}

		open	val	concreteProperty	=	""

		abstract	fun	abstractFunction():	String

		abstract	val	abstractProperty:	String

		init	{}

		constructor(c:	Char)	:	this(c.toString())

}

open	class	SealedSubclass()	:	Sealed("")	{

		override	fun	concreteFunction()	{}

		override	val	concreteProperty	=	""

		override	fun	abstractFunction()	=	""

		override	val	abstractProperty	=	""

}

fun	main()	{

		Concrete()

		SealedSubclass()

}



A	sealed	class	is	basically	an	abstract	class	with	the	extra	constraint	that	all
direct	subclasses	must	be	defined	within	the	same	file.

Indirect	subclasses	of	a	sealed	class	can	be	defined	in	a	separate	file:

//	SealedClasses/ThirdLevelSealed.kt

package	sealedclasses

class	ThirdLevel	:	SealedSubclass()

ThirdLevel	doesn’t	directly	inherit	from	Sealed	so	it	doesn’t	need	to	reside	in
SealedVsAbstract.kt.

Although	a	sealed	interface	seems	like	it	would	be	a	useful	construct,	Kotlin
doesn’t	provide	it	because	Java	classes	cannot	be	prevented	from	implementing
the	same	interface.

Enumerating	Subclasses
When	a	class	is	sealed,	you	can	easily	iterate	through	its	subclasses:

//	SealedClasses/SealedSubclasses.kt

package	sealedclasses

import	atomictest.eq

sealed	class	Top

class	Middle1	:	Top()

class	Middle2	:	Top()

open	class	Middle3	:	Top()

class	Bottom3	:	Middle3()

fun	main()	{

		Top::class.sealedSubclasses

				.map	{	it.simpleName	}	eq

				"[Middle1,	Middle2,	Middle3]"

}

Creating	a	class	generates	a	class	object.	You	can	access	properties	and	member
functions	of	that	class	object	to	discover	information,	and	to	create	and
manipulate	objects	of	that	class.	::class	produces	a	class	object,	so	Top::class
produces	the	class	object	for	Top.

One	of	the	properties	of	class	objects	is	sealedSubclasses,	which	expects	that
Top	is	a	sealed	class	(otherwise	it	produces	an	empty	list).	sealedSubclasses
produces	all	the	class	objects	of	those	subclasses.	Notice	that	only	the	immediate
subclasses	of	Top	appear	in	the	result.



The	toString()	for	a	class	object	is	slightly	verbose.	We	produce	the	class	name
alone	by	using	the	simpleName	property.

sealedSubclasses	uses	reflection,	which	requires	that	the	dependency	kotlin-
reflection.jar	be	in	the	classpath.	Reflection	is	a	way	to	dynamically	discover
and	use	characteristics	of	a	class.

sealedSubclasses	can	be	an	important	tool	when	building	polymorphic
systems.	It	can	ensure	that	new	classes	will	automatically	be	included	in	all
appropriate	operations.	Because	it	discovers	the	subclasses	at	runtime,	however,
it	may	have	a	performance	impact	on	your	system.	If	you	are	having	speed
issues,	be	sure	to	use	a	profiler	to	discover	whether	sealedSubclasses	might	be
the	problem	(as	you	learn	to	use	a	profiler,	you’ll	discover	that	performance
problems	are	usually	not	where	you	guess	them	to	be).

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Type	Checking

In	Kotlin	you	can	easily	act	on	an	object	based	on	its	type.	Normally	this
activity	is	the	domain	of	polymorphism,	so	type	checking	enables
interesting	design	choices.

Traditionally,	type	checking	is	used	for	special	cases.	For	example,	the	majority
of	insects	can	fly,	but	there	are	a	tiny	number	that	cannot.	It	doesn’t	make	sense
to	burden	the	Insect	interface	with	the	few	insects	that	are	unable	to	fly,	so	in
basic()	we	use	type	checking	to	pick	those	out:

//	TypeChecking/Insects.kt

package	typechecking

import	atomictest.eq

interface	Insect	{

		fun	walk()	=	"$name:	walk"

		fun	fly()	=	"$name:	fly"

}

class	HouseFly	:	Insect

class	Flea	:	Insect	{

		override	fun	fly()	=

				throw	Exception("Flea	cannot	fly")

		fun	crawl()	=	"Flea:	crawl"

}

fun	Insect.basic()	=

		walk()	+	"	"	+

		if	(this	is	Flea)

				crawl()

		else

				fly()

interface	SwimmingInsect:	Insect	{

		fun	swim()	=	"$name:	swim"

}

interface	WaterWalker:	Insect	{

		fun	walkWater()	=

				"$name:	walk	on	water"

}

class	WaterBeetle	:	SwimmingInsect

class	WaterStrider	:	WaterWalker

class	WhirligigBeetle	:

		SwimmingInsect,	WaterWalker

fun	Insect.water()	=

		when(this)	{



				is	SwimmingInsect	->	swim()

				is	WaterWalker	->	walkWater()

				else	->	"$name:	drown"

		}

fun	main()	{

		val	insects	=	listOf(

				HouseFly(),	Flea(),	WaterStrider(),

				WaterBeetle(),	WhirligigBeetle()

		)

		insects.map	{	it.basic()	}	eq

				"[HouseFly:	walk	HouseFly:	fly,	"	+

				"Flea:	walk	Flea:	crawl,	"	+

				"WaterStrider:	walk	WaterStrider:	fly,	"	+

				"WaterBeetle:	walk	WaterBeetle:	fly,	"	+

				"WhirligigBeetle:	walk	"	+

				"WhirligigBeetle:	fly]"

		insects.map	{	it.water()	}	eq

				"[HouseFly:	drown,	Flea:	drown,	"	+

				"WaterStrider:	walk	on	water,	"	+

				"WaterBeetle:	swim,	"	+

				"WhirligigBeetle:	swim]"

}

There	are	also	a	very	small	number	of	insects	that	can	walk	on	water	or	swim
underwater.	Again,	it	doesn’t	make	sense	to	put	those	special-case	behaviors	in
the	base	class	to	support	such	a	small	fraction	of	types.	Instead,	Insect.water()
contains	a	when	expression	that	selects	those	subtypes	for	special	behavior	and
assumes	standard	behavior	for	everything	else.

Selecting	a	few	isolated	types	for	special	treatment	is	the	typical	use	case	for
type	checking.	Notice	that	adding	new	types	to	the	system	doesn’t	impact	the
existing	code	(unless	a	new	type	also	requires	special	treatment).

To	simplify	the	code,	name	produces	the	type	of	the	object	pointed	to	by	the	this
under	question:

//	TypeChecking/AnyName.kt

package	typechecking

val	Any.name

		get()	=	this::class.simpleName

name	takes	an	Any	and	gets	the	associated	class	reference	using	::class,	then
produces	the	simpleName	of	that	class.

Now	consider	a	variation	of	the	“shape”	example:

//	TypeChecking/TypeCheck1.kt

package	typechecking

import	atomictest.eq



interface	Shape	{

		fun	draw():	String

}

class	Circle	:	Shape	{

		override	fun	draw()	=	"Circle:	Draw"

}

class	Square	:	Shape	{

		override	fun	draw()	=	"Square:	Draw"

		fun	rotate()	=	"Square:	Rotate"

}

fun	turn(s:	Shape)	=	when(s)	{

		is	Square	->	s.rotate()

		else	->	""

}

fun	main()	{

		val	shapes	=	listOf(Circle(),	Square())

		shapes.map	{	it.draw()	}	eq

				"[Circle:	Draw,	Square:	Draw]"

		shapes.map	{	turn(it)	}	eq

				"[,	Square:	Rotate]"

}

There	are	several	reasons	why	you	might	add	rotate()	to	Square	instead	of
Shape:

The	Shape	interface	is	out	of	your	control,	so	you	cannot	modify	it.
Rotating	Square	seems	like	a	special	case	that	shouldn’t	burden	and/or
complicate	the	Shape	interface.
You’re	just	trying	to	quickly	solve	a	problem	by	adding	Square	and	you
don’t	want	to	take	the	trouble	of	putting	rotate()	in	Shape	and
implementing	it	in	all	the	subtypes.

There	are	certainly	situations	when	this	solution	doesn’t	negatively	impact	your
design,	and	Kotlin’s	when	produces	clean	and	straightforward	code.

If,	however,	you	must	evolve	your	system	by	adding	more	types,	it	begins	to	get
messy:

//	TypeChecking/TypeCheck2.kt

package	typechecking

import	atomictest.eq

class	Triangle	:	Shape	{

		override	fun	draw()	=	"Triangle:	Draw"

		fun	rotate()	=	"Triangle:	Rotate"

}

fun	turn2(s:	Shape)	=	when(s)	{

		is	Square	->	s.rotate()

		is	Triangle	->	s.rotate()



		else	->	""

}

fun	main()	{

		val	shapes	=

				listOf(Circle(),	Square(),	Triangle())

		shapes.map	{	it.draw()	}	eq

				"[Circle:	Draw,	Square:	Draw,	"	+

				"Triangle:	Draw]"

		shapes.map	{	turn(it)	}	eq

				"[,	Square:	Rotate,	]"

		shapes.map	{	turn2(it)	}	eq

				"[,	Square:	Rotate,	Triangle:	Rotate]"

}

The	polymorphic	call	in	shapes.map	{	it.draw()	}	adapts	to	the	new
Triangle	class	without	any	changes	or	errors.	Also,	Kotlin	disallows	Triangle
unless	it	implements	draw().

The	original	turn()	doesn’t	break	when	we	add	Triangle,	but	it	also	doesn’t
produce	the	result	we	want.	turn()	must	become	turn2()	to	generate	the
desired	behavior.

Suppose	your	system	begins	to	accumulate	more	functions	like	turn().	The
Shape	logic	is	now	distributed	across	all	these	functions,	rather	than	being
centralized	within	the	Shape	hierarchy.	If	you	add	more	new	types	of	Shape,	you
must	search	for	every	function	containing	a	when	that	switches	on	a	Shape	type,
and	modify	it	to	include	the	new	case.	If	you	miss	any	of	these	functions,	the
compiler	won’t	catch	it.

turn()	and	turn2()	exhibit	what	is	often	called	type-check	coding,	which	means
testing	for	every	type	in	your	system.	(If	you	are	only	looking	for	one	or	a	few
special	types	it	is	not	usually	considered	type-check	coding).

In	traditional	object-oriented	languages,	type-check	coding	is	usually	considered
an	antipattern	because	it	invites	the	creation	of	one	or	more	pieces	of	code	that
must	be	vigilantly	maintained	and	updated	whenever	you	add	or	change	types	in
your	system.	Polymorphism,	on	the	other	hand,	encapsulates	those	changes	into
the	types	that	you	add	or	modify,	and	those	changes	are	then	transparently
propagated	through	your	system.

Note	that	the	problem	only	occurs	when	the	system	needs	to	evolve	by	adding
more	Shape	types.	If	that’s	not	how	your	system	evolves,	you	won’t	encounter
the	issue.	If	it	is	a	problem	it	doesn’t	usually	happen	suddenly,	but	becomes
steadily	more	difficult	as	your	system	evolves.



We	shall	see	that	Kotlin	significantly	mitigates	this	problem	through	the	use	of
sealed	classes.	The	solution	isn’t	perfect,	but	type	checking	becomes	a	much
more	reasonable	design	choice.

Type	Checking	in	Auxiliary	Functions
The	essence	of	a	BeverageContainer	is	that	it	holds	and	delivers	beverages.	It
seems	to	make	sense	to	treat	recycling	as	an	auxiliary	function:

//	TypeChecking/BeverageContainer.kt

package	typechecking

import	atomictest.eq

interface	BeverageContainer	{

		fun	open():	String

		fun	pour():	String

}

class	Can	:	BeverageContainer	{

		override	fun	open()	=	"Pop	Top"

		override	fun	pour()	=	"Can:	Pour"

}

open	class	Bottle	:	BeverageContainer	{

		override	fun	open()	=	"Remove	Cap"

		override	fun	pour()	=	"Bottle:	Pour"

}

class	GlassBottle	:	Bottle()

class	PlasticBottle	:	Bottle()

fun	BeverageContainer.recycle()	=

		when(this)	{

				is	Can	->	"Recycle	Can"

				is	GlassBottle	->	"Recycle	Glass"

				else	->	"Landfill"

		}

fun	main()	{

		val	refrigerator	=	listOf(

				Can(),	GlassBottle(),	PlasticBottle()

		)

		refrigerator.map	{	it.open()	}	eq

				"[Pop	Top,	Remove	Cap,	Remove	Cap]"

		refrigerator.map	{	it.recycle()	}	eq

				"[Recycle	Can,	Recycle	Glass,	"	+

				"Landfill]"

}

By	defining	recycle()	as	an	auxiliary	function	it	captures	the	different	recycling
behaviors	in	a	single	place,	rather	than	having	them	distributed	throughout	the
BeverageContainer	hierarchy	by	making	recycle()	a	member	function.

Acting	on	types	with	when	is	clean	and	straightforward,	but	the	design	is	still
problematic.	When	you	add	a	new	type,	recycle()	quietly	uses	the	else	clause.



Because	of	this,	necessary	changes	to	type-checking	functions	like	recycle()
might	be	missed.	What	we’d	like	is	for	the	compiler	to	tell	us	that	we’ve
forgotten	a	type	check,	just	as	it	does	when	we	implement	an	interface	or	inherit
an	abstract	class	and	it	tells	us	we’ve	forgotten	to	override	a	function.

sealed	classes	provide	a	significant	improvement	here.	Making	Shape	a	sealed
class	means	that	the	when	in	turn()	(after	removing	the	else)	requires	that	each
type	be	checked.	Interfaces	cannot	be	sealed	so	we	must	rewrite	Shape	into	a
class:

//	TypeChecking/TypeCheck3.kt

package	typechecking3

import	atomictest.eq

import	typechecking.name

sealed	class	Shape	{

		fun	draw()	=	"$name:	Draw"

}

class	Circle	:	Shape()

class	Square	:	Shape()	{

		fun	rotate()	=	"Square:	Rotate"

}

class	Triangle	:	Shape()	{

		fun	rotate()	=	"Triangle:	Rotate"

}

fun	turn(s:	Shape)	=	when(s)	{

		is	Circle	->	""

		is	Square	->	s.rotate()

		is	Triangle	->	s.rotate()

}

fun	main()	{

		val	shapes	=	listOf(Circle(),	Square())

		shapes.map	{	it.draw()	}	eq

				"[Circle:	Draw,	Square:	Draw]"

		shapes.map	{	turn(it)	}	eq

				"[,	Square:	Rotate]"

}

If	we	add	a	new	Shape,	the	compiler	tells	us	to	add	a	new	type-check	path	in
turn().

But	let’s	look	at	what	happens	when	we	try	to	apply	sealed	to	the
BeverageContainer	problem.	In	the	process,	we	create	additional	Can	and
Bottle	subtypes:

//	TypeChecking/BeverageContainer2.kt

package	typechecking2

import	atomictest.eq



sealed	class	BeverageContainer	{

		abstract	fun	open():	String

		abstract	fun	pour():	String

}

sealed	class	Can	:	BeverageContainer()	{

		override	fun	open()	=	"Pop	Top"

		override	fun	pour()	=	"Can:	Pour"

}

class	SteelCan	:	Can()

class	AluminumCan	:	Can()

sealed	class	Bottle	:	BeverageContainer()	{

		override	fun	open()	=	"Remove	Cap"

		override	fun	pour()	=	"Bottle:	Pour"

}

class	GlassBottle	:	Bottle()

sealed	class	PlasticBottle	:	Bottle()

class	PETBottle	:	PlasticBottle()

class	HDPEBottle	:	PlasticBottle()

fun	BeverageContainer.recycle()	=

		when(this)	{

				is	Can	->	"Recycle	Can"

				is	Bottle	->	"Recycle	Bottle"

		}

fun	BeverageContainer.recycle2()	=

		when(this)	{

				is	Can	->	when(this)	{

						is	SteelCan	->	"Recycle	Steel"

						is	AluminumCan	->	"Recycle	Aluminum"

				}

				is	Bottle	->	when(this)	{

						is	GlassBottle	->	"Recycle	Glass"

						is	PlasticBottle	->	when(this)	{

								is	PETBottle	->	"Recycle	PET"

								is	HDPEBottle	->	"Recycle	HDPE"

						}

				}

		}

fun	main()	{

		val	refrigerator	=	listOf(

				SteelCan(),	AluminumCan(),

				GlassBottle(),

				PETBottle(),	HDPEBottle()

		)

		refrigerator.map	{	it.open()	}	eq

				"[Pop	Top,	Pop	Top,	Remove	Cap,	"	+

				"Remove	Cap,	Remove	Cap]"

		refrigerator.map	{	it.recycle()	}	eq

				"[Recycle	Can,	Recycle	Can,	"	+

				"Recycle	Bottle,	Recycle	Bottle,	"	+

				"Recycle	Bottle]"

		refrigerator.map	{	it.recycle2()	}	eq

				"[Recycle	Steel,	Recycle	Aluminum,	"	+

				"Recycle	Glass,	"	+

				"Recycle	PET,	Recycle	HDPE]"

}



Note	that	the	intermediate	classes	Can	and	Bottle	must	also	be	sealed	for	this
approach	to	work.

As	long	as	the	classes	are	direct	subclasses	of	BeverageContainer,	the	compiler
guarantees	that	the	when	in	recycle()	is	exhaustive.	But	subclasses	like
GlassBottle	and	AluminumCan	are	not	checked.	To	solve	the	problem	we	must
explicitly	include	the	nested	when	expressions	seen	in	recycle2(),	at	which
point	the	compiler	does	require	exhaustive	type	checks	(try	commenting	one	of
the	specific	Can	or	Bottle	types	to	verify	this).

To	create	a	robust	type-checking	solution	you	must	rigorously	use	sealed	at
each	intermediate	level	of	the	class	hierarchy,	while	ensuring	that	each	level	of
subclasses	has	a	corresponding	nested	when.	In	this	case,	if	you	add	a	new
subtype	of	Can	or	Bottle	the	compiler	ensures	that	recycle2()	tests	for	each
subtype.

Although	not	as	clean	as	polymorphism,	this	is	a	significant	improvement	over
prior	object-oriented	languages,	and	allows	you	to	choose	whether	to	write	a
polymorphic	member	function	or	auxiliary	function.	Notice	that	this	problem
only	occurs	when	you	have	multiple	levels	of	inheritance.

For	comparison,	let’s	rewrite	BeverageContainer2.kt	by	bringing	recycle()
into	BeverageContainer,	which	can	again	be	an	interface:

//	TypeChecking/BeverageContainer3.kt

package	typechecking3

import	atomictest.eq

import	typechecking.name

interface	BeverageContainer	{

		fun	open():	String

		fun	pour()	=	"$name:	Pour"

		fun	recycle():	String

}

abstract	class	Can	:	BeverageContainer	{

		override	fun	open()	=	"Pop	Top"

}

class	SteelCan	:	Can()	{

		override	fun	recycle()	=	"Recycle	Steel"

}

class	AluminumCan	:	Can()	{

		override	fun	recycle()	=	"Recycle	Aluminum"

}

abstract	class	Bottle	:	BeverageContainer	{

		override	fun	open()	=	"Remove	Cap"



}

class	GlassBottle	:	Bottle()	{

		override	fun	recycle()	=	"Recycle	Glass"

}

abstract	class	PlasticBottle	:	Bottle()

class	PETBottle	:	PlasticBottle()	{

		override	fun	recycle()	=	"Recycle	PET"

}

class	HDPEBottle	:	PlasticBottle()	{

		override	fun	recycle()	=	"Recycle	HDPE"

}

fun	main()	{

		val	refrigerator	=	listOf(

				SteelCan(),	AluminumCan(),

				GlassBottle(),

				PETBottle(),	HDPEBottle()

		)

		refrigerator.map	{	it.open()	}	eq

				"[Pop	Top,	Pop	Top,	Remove	Cap,	"	+

				"Remove	Cap,	Remove	Cap]"

		refrigerator.map	{	it.recycle()	}	eq

				"[Recycle	Steel,	Recycle	Aluminum,	"	+

				"Recycle	Glass,	"	+

				"Recycle	PET,	Recycle	HDPE]"

}

By	making	Can	and	Bottle	abstract	classes,	we	force	their	subclasses	to
override	recycle()	in	the	same	way	that	the	compiler	forces	each	type	to	be
checked	inside	recycle2()	in	BeverageContainer2.kt.

Now	the	behavior	of	recycle()	is	distributed	among	the	classes,	which	might	be
fine—it’s	a	design	decision.	If	you	decide	that	recycling	behavior	changes	often
and	you’d	like	to	have	it	all	in	one	place,	then	using	the	auxiliary	type-checked
recycle2()	from	BeverageContainer2.kt	might	be	a	better	choice	for	your
needs,	and	Kotlin’s	features	make	that	reasonable.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Nested	Classes

Nested	classes	enable	more	refined	structures	within	your	objects.

A	nested	class	is	simply	a	class	within	the	namespace	of	the	outer	class.	The
implication	is	that	the	outer	class	“owns”	the	nested	class.	This	feature	is	not
essential,	but	nesting	a	class	can	clarify	your	code.	Here,	Plane	is	nested	within
Airport:

//	NestedClasses/Airport.kt

package	nestedclasses

import	atomictest.eq

import	nestedclasses.Airport.Plane

class	Airport(private	val	code:	String)	{

		open	class	Plane	{

				//	Can	access	private	properties:

				fun	contact(airport:	Airport)	=

						"Contacting	${airport.code}"

		}

		private	class	PrivatePlane	:	Plane()

		fun	privatePlane():	Plane	=	PrivatePlane()

}

fun	main()	{

		val	denver	=	Airport("DEN")

		var	plane	=	Plane()																			//	[1]

		plane.contact(denver)	eq	"Contacting	DEN"

		//	Can't	do	this:

		//	val	privatePlane	=	Airport.PrivatePlane()

		val	frankfurt	=	Airport("FRA")

		plane	=	frankfurt.privatePlane()

		//	Can't	do	this:

		//	val	p	=	plane	as	PrivatePlane						//	[2]

		plane.contact(frankfurt)	eq	"Contacting	FRA"

}

In	contact(),	the	nested	class	Plane	has	access	to	the	private	property	code	in
the	airport	argument,	whereas	an	ordinary	class	would	not	have	this	access.
Other	than	that,	Plane	is	simply	a	class	inside	the	Airport	namespace.

Creating	a	Plane	object	does	not	require	an	Airport	object,	but	if	you	create	it
outside	the	Airport	class	body,	you	must	ordinarily	qualify	the	constructor	call
in	[1].	By	importing	nestedclasses.Airport.Plane	we	avoid	this	qualification.



A	nested	class	can	be	private,	as	with	PrivatePlane.	Making	it	private	means
that	PrivatePlane	is	completely	invisible	outside	the	body	of	Airport,	so	you
cannot	call	the	PrivatePlane	constructor	outside	of	Airport.	If	you	define	and
return	a	PrivatePlane	from	a	member	function,	as	seen	in	privatePlane(),	the
result	must	be	upcast	to	a	public	type	(assuming	it	extends	a	public	type),	and
cannot	be	downcast	to	the	private	type,	as	seen	in	[2].

Here’s	an	example	of	nesting	where	Cleanable	is	a	base	class	for	both	the
enclosing	class	House	and	all	the	nested	classes.	clean()	goes	through	a	List	of
parts	and	calls	clean()	for	each	one,	producing	a	kind	of	recursion:

//	NestedClasses/NestedHouse.kt

package	nestedclasses

import	atomictest.*

abstract	class	Cleanable(val	id:	String)	{

		open	val	parts:	List<Cleanable>	=	listOf()

		fun	clean():	String	{

				val	text	=	"$id	clean"

				if	(parts.isEmpty())	return	text

				return	"${parts.joinToString(

						"	",	"(",	")",

						transform	=	Cleanable::clean)}	$text\n"

		}

}

class	House	:	Cleanable("House")	{

		override	val	parts	=	listOf(

				Bedroom("Master	Bedroom"),

				Bedroom("Guest	Bedroom")

		)

		class	Bedroom(id:	String)	:	Cleanable(id)	{

				override	val	parts	=

						listOf(Closet(),	Bathroom())

				class	Closet	:	Cleanable("Closet")	{

						override	val	parts	=

								listOf(Shelf(),	Shelf())

						class	Shelf	:	Cleanable("Shelf")

				}

				class	Bathroom	:	Cleanable("Bathroom")	{

						override	val	parts	=

								listOf(Toilet(),	Sink())

						class	Toilet	:	Cleanable("Toilet")

						class	Sink	:	Cleanable("Sink")

				}

		}

}

fun	main()	{

		House().clean()	eq	"""

		(((Shelf	clean	Shelf	clean)	Closet	clean

			(Toilet	clean	Sink	clean)	Bathroom	clean

		)	Master	Bedroom	clean

			((Shelf	clean	Shelf	clean)	Closet	clean

			(Toilet	clean	Sink	clean)	Bathroom	clean

		)	Guest	Bedroom	clean

		)	House	clean



		"""

}

Notice	the	multiple	levels	of	nesting.	For	example,	Bedroom	contains	Bathroom
which	contains	Toilet	and	Sink.

Local	Classes
Classes	that	are	nested	inside	functions	are	called	local	classes:

//	NestedClasses/LocalClasses.kt

package	nestedclasses

fun	localClasses()	{

		open	class	Amphibian

		class	Frog	:	Amphibian()

		val	amphibian:	Amphibian	=	Frog()

}

Amphibian	looks	like	a	candidate	to	be	an	interface	rather	than	an	open	class.
However,	local	interfaces	are	not	allowed.

Local	open	classes	should	be	rare;	if	you	need	one,	what	you’re	trying	to	make	is
probably	significant	enough	to	create	a	regular	class.

Amphibian	and	Frog	are	invisible	outside	localClasses(),	so	you	can’t	return
them	from	the	function.	To	return	objects	of	local	classes,	you	must	upcast	them
to	a	class	or	interface	defined	outside	the	function:

//	NestedClasses/ReturnLocal.kt

package	nestedclasses

interface	Amphibian

fun	createAmphibian():	Amphibian	{

		class	Frog	:	Amphibian

		return	Frog()

}

fun	main()	{

		val	amphibian	=	createAmphibian()

		//	amphibian	as	Frog

}

Frog	is	still	invisible	outside	createAmphibian()—in	main(),	you	cannot	cast
amphibian	to	a	Frog	because	Frog	isn’t	available,	so	Kotlin	reports	the	attempt
to	use	Frog	as	an	“unresolved	reference.”

Classes	Inside	Interfaces



Classes	can	be	nested	within	interfaces:

//	NestedClasses/WithinInterface.kt

package	nestedclasses

import	atomictest.eq

interface	Item	{

		val	type:	Type

		data	class	Type(val	type:	String)

}

class	Bolt(type:	String)	:	Item	{

		override	val	type	=	Item.Type(type)

}

fun	main()	{

		val	items	=	listOf(

				Bolt("Slotted"),	Bolt("Hex")

		)

		items.map(Item::type)	eq

				"[Type(type=Slotted),	Type(type=Hex)]"

}

In	Bolt,	the	val	type	must	be	overridden	and	assigned	using	the	qualified	class
name	Item.Type.

Nested	Enumerations
Enumerations	are	classes,	so	they	can	be	nested	inside	other	classes:

//	NestedClasses/Ticket.kt

package	nestedclasses

import	atomictest.eq

import	nestedclasses.Ticket.Seat.*

class	Ticket(

		val	name:	String,

		val	seat:	Seat	=	Coach

)	{

		enum	class	Seat	{

				Coach,

				Premium,

				Business,

				First

		}

		fun	upgrade():	Ticket	{

				val	newSeat	=	values()[

						(seat.ordinal	+	1)

						.coerceAtMost(First.ordinal)

				]

				return	Ticket(name,	newSeat)

		}

		fun	meal()	=	when(seat)	{

				Coach	->	"Bag	Meal"

				Premium	->	"Bag	Meal	with	Cookie"

				Business	->	"Hot	Meal"

				First	->	"Private	Chef"

		}

		override	fun	toString()	=	"$seat"



}

fun	main()	{

		val	tickets	=	listOf(

				Ticket("Jerry"),

				Ticket("Summer",	Premium),

				Ticket("Squanchy",	Business),

				Ticket("Beth",	First)

		)

		tickets.map(Ticket::meal)	eq

				"[Bag	Meal,	Bag	Meal	with	Cookie,	"	+

				"Hot	Meal,	Private	Chef]"

		tickets.map(Ticket::upgrade)	eq

				"[Premium,	Business,	First,	First]"

		tickets	eq

				"[Coach,	Premium,	Business,	First]"

		tickets.map(Ticket::meal)	eq

				"[Bag	Meal,	Bag	Meal	with	Cookie,	"	+

				"Hot	Meal,	Private	Chef]"

}

upgrade()	adds	one	to	the	ordinal	value	of	the	seat,	then	uses	the	library
function	coerceAtMost()	to	ensure	the	new	value	does	not	exceed
First.ordinal	before	indexing	into	values()	to	produce	the	new	Seat	type.
Following	functional	programming	principles,	upgrading	a	Ticket	produces	a
new	Ticket	rather	than	modifying	the	old	one.

meal()	uses	when	to	test	every	type	of	Seat	and	this	suggests	we	could	use
polymorphism	instead.

Enumerations	cannot	be	nested	within	functions,	and	cannot	inherit	from	other
classes	(including	other	enumerations).

Interfaces	can	contain	nested	enumerations.	FillIt	is	a	game-like	simulation
that	fills	a	square	grid	with	randomly-chosen	X	and	O	marks:

//	NestedClasses/FillIt.kt

package	nestedclasses

import	nestedclasses.Game.State.*

import	nestedclasses.Game.Mark.*

import	kotlin.random.Random

import	atomictest.*

interface	Game	{

		enum	class	State	{	Playing,	Finished	}

		enum	class	Mark	{	Blank,	X	,O	}

}

class	FillIt(

		val	side:	Int	=	3,	randomSeed:	Int	=	0

):	Game	{

		val	rand	=	Random(randomSeed)

		private	var	state	=	Playing

		private	val	grid	=



				MutableList(side	*	side)	{	Blank	}

		private	var	player	=	X

		fun	turn()	{

				val	blanks	=	grid.withIndex()

						.filter	{	it.value	==	Blank	}

				if(blanks.isEmpty())	{

						state	=	Finished

				}	else	{

						grid[blanks.random(rand).index]	=	player

						player	=	if	(player	==	X)	O	else	X

				}

		}

		fun	play()	{

				while(state	!=	Finished)

						turn()

		}

		override	fun	toString()	=

				grid.chunked(side).joinToString("\n")

}

fun	main()	{

		val	game	=	FillIt(8,	17)

		game.play()

		game	eq	"""

		[O,	X,	O,	X,	O,	X,	X,	X]

		[X,	O,	O,	O,	O,	O,	X,	X]

		[O,	O,	X,	O,	O,	O,	X,	X]

		[X,	O,	O,	O,	O,	O,	X,	O]

		[X,	X,	O,	O,	X,	X,	X,	O]

		[X,	X,	O,	O,	X,	X,	O,	X]

		[O,	X,	X,	O,	O,	O,	X,	O]

		[X,	O,	X,	X,	X,	O,	X,	X]

		"""

}

For	testability,	we	seed	a	Random	object	with	randomSeed	to	produce	identical
output	each	time	the	program	runs.	Each	element	of	grid	is	initialized	with
Blank.	In	turn(),	we	first	find	all	cells	containing	Blank,	along	with	their
indices.	If	there	are	no	more	Blank	cells	then	the	simulation	is	complete.
Otherwise,	we	use	random()	with	our	seeded	generator	to	select	one	of	the	Blank
cells.	Because	we	used	withIndex()	earlier,	we	must	select	the	index	property
to	produce	the	location	of	the	cell	we	want	to	change.

To	display	the	List	in	the	form	of	a	two-dimensional	grid,	toString()	uses	the
chunked()	library	function	to	break	the	List	into	pieces,	each	of	length	side,
then	joins	these	together	with	newlines.

Try	experimenting	with	FillIt	using	different	sides	and	randomSeeds.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Objects

The	object	keyword	defines	something	that	looks	roughly	like	a	class.
However,	you	can’t	create	instances	of	an	object—there’s	only	one.	This	is
sometimes	called	the	Singleton	pattern.

An	object	is	a	way	to	combine	functions	and	properties	that	logically	belong
together,	but	this	combination	either	doesn’t	require	multiple	instances,	or	you
want	to	explicitly	prevent	multiple	instances.	You	never	create	an	instance	of	an
object—there’s	only	one	and	it’s	available	once	the	object	has	been	defined:

//	Objects/ObjectKeyword.kt

package	objects

import	atomictest.eq

object	JustOne	{

		val	n	=	2

		fun	f()	=	n	*	10

		fun	g()	=	this.n	*	20			//	[1]

}

fun	main()	{

		//	val	x	=	JustOne()	//	Error

		JustOne.n	eq	2

		JustOne.f()	eq	20

		JustOne.g()	eq	40

}

Here,	you	can’t	say	JustOne()	to	create	a	new	instance	of	a	class	JustOne.
That’s	because	the	object	keyword	defines	the	structure	and	creates	the	object	at
the	same	time.	In	addition,	it	places	the	elements	inside	the	object’s	namespace.
If	you	only	want	the	object	to	be	visible	within	the	current	file,	you	can	make	it
private.

[1]	The	this	keyword	refers	to	the	single	object	instance.

You	cannot	provide	a	parameter	list	for	an	object.

Naming	conventions	are	slightly	different	when	using	object.	Typically,	when
we	create	an	instance	of	a	class,	we	lower-case	the	first	letter	of	the	instance
name.	When	you	create	an	object,	however,	Kotlin	defines	the	class	and	creates



a	single	instance	of	that	class.	We	capitalize	the	first	letter	of	the	object	name
because	it	also	represents	a	class.

An	object	can	inherit	from	a	regular	class	or	interface:

//	Objects/ObjectInheritance.kt

package	objects

import	atomictest.eq

open	class	Paint(val	color:	String)	{

		open	fun	apply()	=	"Applying	$color"

}

object	Acrylic:	Paint("Blue")	{

		override	fun	apply()	=

				"Acrylic,	${super.apply()}"

}

interface	PaintPreparation	{

		fun	prepare():	String

}

object	Prepare:	PaintPreparation	{

		override	fun	prepare()	=	"Scrape"

}

fun	main()	{

		Prepare.prepare()	eq	"Scrape"

		Paint("Green").apply()	eq	"Applying	Green"

		Acrylic.apply()	eq	"Acrylic,	Applying	Blue"

}

There’s	only	a	single	instance	of	an	object,	so	that	instance	is	shared	across	all
code	that	uses	it.	Here’s	an	object	in	its	own	package:

//	Objects/GlobalSharing.kt

package	objectsharing

object	Shared	{

		var	i:	Int	=	0

}

We	can	now	use	Shared	in	a	different	package:

//	Objects/Share1.kt

package	objectshare1

import	objectsharing.Shared

fun	f()	{

		Shared.i	+=	5

}

And	within	a	third	package:



//	Objects/Share2.kt

package	objectshare2

import	objectsharing.Shared

import	objectshare1.f

import	atomictest.eq

fun	g()	{

		Shared.i	+=	7

}

fun	main()	{

		f()

		g()

		Shared.i	eq	12

}

You	can	see	from	the	results	that	Shared	is	the	same	object	in	all	packages,
which	makes	sense	because	object	creates	a	single	instance.	If	you	make
Shared	private,	it’s	not	available	in	the	other	files.

objects	can’t	be	placed	inside	functions,	but	they	can	be	nested	inside	other
objects	or	classes	(as	long	as	those	classes	are	not	themselves	nested	within
other	classes):

//	Objects/ObjectNesting.kt

package	objects

import	atomictest.eq

object	Outer	{

		object	Nested	{

				val	a	=	"Outer.Nested.a"

		}

}

class	HasObject	{

		object	Nested	{

				val	a	=	"HasObject.Nested.a"

		}

}

fun	main()	{

		Outer.Nested.a	eq	"Outer.Nested.a"

		HasObject.Nested.a	eq	"HasObject.Nested.a"

}

There’s	another	way	to	put	an	object	inside	a	class:	a	companion	object,	which
you’ll	see	in	the	Companion	Objects	atom.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Inner	Classes

Inner	classes	are	like	nested	classes,	but	an	object	of	an	inner	class
maintains	a	reference	to	the	outer	class.

An	inner	class	has	an	implicit	link	to	the	outer	class.	In	the	following	example,
Hotel	is	like	Airport	from	Nested	Classes,	but	it	uses	inner	classes.	Note	that
reception	is	part	of	Hotel,	but	callReception(),	which	is	a	member	of	the
nested	class	Room,	accesses	reception	without	qualification:

//	InnerClasses/Hotel.kt

package	innerclasses

import	atomictest.eq

class	Hotel(private	val	reception:	String)	{

		open	inner	class	Room(val	id:	Int	=	0)	{

				//	Uses	'reception'	from	outer	class:

				fun	callReception()	=

						"Room	$id	Calling	$reception"

		}

		private	inner	class	Closet	:	Room()

		fun	closet():	Room	=	Closet()

}

fun	main()	{

		val	nycHotel	=	Hotel("311")

		//	You	need	an	outer	object	to

		//	create	an	instance	of	the	inner	class:

		val	room	=	nycHotel.Room(319)

		room.callReception()	eq

				"Room	319	Calling	311"

		val	sfHotel	=	Hotel("0")

		val	closet	=	sfHotel.closet()

		closet.callReception()	eq	"Room	0	Calling	0"

}

Because	Closet	inherits	the	inner	class	Room,	Closet	must	also	be	an	inner
class.	Nested	classes	cannot	inherit	from	inner	classes.

Closet	is	private,	so	it	is	only	visible	within	the	scope	of	Hotel.

An	inner	object	keeps	a	reference	to	its	associated	outer	object.	Thus,	when
creating	an	inner	object	you	must	first	have	an	outer	object.	You	cannot	create	a
Room	object	without	a	Hotel	object,	as	you	see	with	nycHotel.Room().



inner	data	classes	are	not	allowed.

Qualified	this
One	of	the	benefits	of	classes	is	the	this	reference.	You	don’t	have	to	explicitly
say	“the	current	object”	when	you	access	a	property	or	member	function.

With	a	simple	class,	the	meaning	of	this	is	obvious,	but	with	an	inner	class,
this	could	refer	to	either	the	inner	object	or	an	outer	object.	To	resolve	this
issue,	Kotlin	provides	the	qualified	this	syntax:	this	followed	by	@	and	the
name	of	the	target	class.

Consider	three	levels	of	classes:	an	outer	class	Fruit	containing	an	inner	class
Seed,	which	itself	contains	an	inner	class	DNA:

//	InnerClasses/QualifiedThis.kt

package	innerclasses

import	atomictest.eq

import	typechecking.name

class	Fruit	{	//	Implicit	label	@Fruit

		fun	changeColor(color:	String)	=

				"Fruit	$color"

		fun	absorbWater(amount:	Int)	{}

		inner	class	Seed	{	//	Implicit	label	@Seed

				fun	changeColor(color:	String)	=

						"Seed	$color"

				fun	germinate()	{}

				fun	whichThis()	{

						//	Defaults	to	the	current	class:

						this.name	eq	"Seed"

						//	To	clarify,	you	can	redundantly

						//	qualify	the	default	this:

						this@Seed.name		eq	"Seed"

						//	Must	explicitly	access	Fruit:

						this@Fruit.name		eq	"Fruit"

						//	Cannot	access	a	further-inner	class:

						//	this@DNA.name

				}

				inner	class	DNA	{	//	Implicit	label	@DNA

						fun	changeColor(color:	String)	{

								//	changeColor(color)	//	Recursive

								this@Seed.changeColor(color)

								this@Fruit.changeColor(color)

						}

						fun	plant()	{

								//	Call	outer-class	functions

								//	Without	qualification:

								germinate()

								absorbWater(10)

						}

						//	Extension	function:

						fun	Int.grow()	{	//	Implicit	label	@grow

								//	Default	is	the	Int.grow()	receiver:

								this.name	eq	"Int"



								//	Redundant	qualification:

								this@grow.name		eq	"Int"

								//	You	can	still	access	everything:

								this@DNA.name		eq	"DNA"

								this@Seed.name		eq	"Seed"

								this@Fruit.name		eq	"Fruit"

						}

						//	Extension	functions	on	outer	classes:

						fun	Seed.plant()	{}

						fun	Fruit.plant()	{}

						fun	whichThis()	{

								//	Defaults	to	the	current	class:

								this.name	eq	"DNA"

								//	Redundant	qualification:

								this@DNA.name		eq	"DNA"

								//	The	others	must	be	explicit:

								this@Seed.name		eq	"Seed"

								this@Fruit.name		eq	"Fruit"

						}

				}

		}

}

//	Extension	function:

fun	Fruit.grow(amount:	Int)	{

		absorbWater(amount)

		//	Calls	Fruit's	version	of	changeColor():

		changeColor("Red")	eq	"Fruit	Red"

}

//	Inner-class	extension	function:

fun	Fruit.Seed.grow(n:	Int)	{

		germinate()

		//	Calls	Seed's	version	of	changeColor():

		changeColor("Green")	eq	"Seed	Green"

}

//	Inner-class	extension	function:

fun	Fruit.Seed.DNA.grow(n:	Int)	=	n.grow()

fun	main()	{

		val	fruit	=	Fruit()

		fruit.grow(4)

		val	seed	=	fruit.Seed()

		seed.grow(9)

		seed.whichThis()

		val	dna	=	seed.DNA()

		dna.plant()

		dna.grow(5)

		dna.whichThis()

		dna.changeColor("Purple")

}

Fruit,	Seed	and	DNA	all	have	functions	called	changeColor(),	but	there’s	no
overriding—this	is	not	an	inheritance	relationship.	Because	they	have	the	same
name	and	signature,	the	only	way	to	distinguish	them	is	with	a	qualified	this,	as
you	see	in	DNA’s	changeColor().	Inside	plant(),	functions	in	either	of	the	two
outer	classes	can	be	called	without	qualification	if	there	are	no	name	collisions.



Even	though	it’s	an	extension	function,	grow()	can	still	access	all	the	objects	in
the	outer	class.	grow()	can	be	called	anywhere	the	Fruit.Seed.DNA	implicit
receiver	is	available;	for	example,	inside	an	extension	function	for	DNA.

Inner	Class	Inheritance
An	inner	class	can	inherit	another	inner	class	from	a	different	outer	class.	Here,
Yolk	in	BigEgg	is	derived	from	Yolk	in	Egg:

//	InnerClasses/InnerClassInheritance.kt

package	innerclasses

import	atomictest.*

open	class	Egg	{

		private	var	yolk	=	Yolk()

		open	inner	class	Yolk	{

				init	{	trace("Egg.Yolk()")	}

				open	fun	f()	{	trace("Egg.Yolk.f()")	}

		}

		init	{	trace("New	Egg()")	}

		fun	insertYolk(y:	Yolk)	{	yolk	=	y	}

		fun	g()	{	yolk.f()	}

}

class	BigEgg	:	Egg()	{

		inner	class	Yolk	:	Egg.Yolk()	{

				init	{	trace("BigEgg.Yolk()")	}

				override	fun	f()	{

						trace("BigEgg.Yolk.f()")

				}

		}

		init	{	insertYolk(Yolk())	}

}

fun	main()	{

		BigEgg().g()

		trace	eq	"""

				Egg.Yolk()

				New	Egg()

				Egg.Yolk()

				BigEgg.Yolk()

				BigEgg.Yolk.f()

		"""

}

BigEgg.Yolk	explicitly	names	Egg.Yolk	as	its	base	class,	and	overrides	its	f()
member	function.	The	function	insertYolk()	allows	BigEgg	to	upcast	one	of	its
own	Yolk	objects	into	the	yolk	reference	in	Egg,	so	when	g()	calls	yolk.f(),	the
overridden	version	of	f()	is	used.	The	second	call	to	Egg.Yolk()	is	the	base-
class	constructor	call	of	the	BigEgg.Yolk	constructor.	You	can	see	that	the
overridden	version	of	f()	is	used	when	g()	is	called.

As	a	review	of	object	construction,	study	the	trace	output	until	it	makes	sense.



Local	&	Anonymous	Inner	Classes
Classes	defined	inside	member	functions	are	called	local	inner	classes.	These
can	also	be	created	anonymously,	using	an	object	expression,	or	using	a	SAM
conversion.	In	all	cases,	the	inner	keyword	is	not	used,	but	is	implied:

//	InnerClasses/LocalInnerClasses.kt

package	innerclasses

import	atomictest.eq

fun	interface	Pet	{

		fun	speak():	String

}

object	CreatePet	{

		fun	home()	=	"	home!"

		fun	dog():	Pet	{

				val	say	=	"Bark"

				//	Local	inner	class:

				class	Dog	:	Pet	{

						override	fun	speak()	=	say	+	home()

				}

				return	Dog()

		}

		fun	cat():	Pet	{

				val	emit	=	"Meow"

				//	Anonymous	inner	class:

				return	object:	Pet	{

						override	fun	speak()	=	emit	+	home()

				}

		}

		fun	hamster():	Pet	{

				val	squeak	=	"Squeak"

				//	SAM	conversion:

				return	Pet	{	squeak	+	home()	}

		}

}

fun	main()	{

		CreatePet.dog().speak()	eq	"Bark	home!"

		CreatePet.cat().speak()	eq	"Meow	home!"

		CreatePet.hamster().speak()	eq	"Squeak	home!"

}

A	local	inner	class	has	access	to	other	elements	in	the	function	as	well	as
elements	in	the	outer-class	object,	thus	say,	emit,	squeak	and	home()	are
available	within	speak().

You	can	identify	an	anonymous	inner	class	because	it	uses	an	object	expression,
which	you	see	in	cat().	It	returns	an	object	of	a	class	inherited	from	Pet	that
overrides	speak().	Anonymous	inner	classes	are	smaller	and	more
straightforward	and	do	not	create	a	named	class	that	will	only	be	used	in	one
place.	Even	more	compact	is	a	SAM	conversion,	as	seen	in	hamster().



Because	inner	classes	keep	a	reference	to	the	outer-class	object,	local	inner
classes	can	access	all	members	of	the	enclosing	class:

//	InnerClasses/CounterFactory.kt

package	innerclasses

import	atomictest.*

fun	interface	Counter	{

		fun	next():	Int

}

object	CounterFactory	{

		private	var	count	=	0

		fun	new(name:	String):	Counter	{

				//	Local	inner	class:

				class	Local	:	Counter	{

						init	{	trace("Local()")	}

						override	fun	next():	Int	{

								//	Access	local	identifiers:

								trace("$name	$count")

								return	count++

						}

				}

				return	Local()

		}

		fun	new2(name:	String):	Counter	{

				//	Instance	of	an	anonymous	inner	class:

				return	object:	Counter	{

						init	{	trace("Counter()")	}

						override	fun	next():	Int	{

								trace("$name	$count")

								return	count++

						}

				}

		}

		fun	new3(name:	String):	Counter	{

				trace("Counter()")

				return	Counter	{	//	SAM	conversion

						trace("$name	$count")

						count++

				}

		}

}

fun	main()	{

		fun	test(counter:	Counter)	{

				(0..3).forEach	{	counter.next()	}

		}

		test(CounterFactory.new("Local"))

		test(CounterFactory.new2("Anon"))

		test(CounterFactory.new3("SAM"))

		trace	eq	"""

				Local()	Local	0	Local	1	Local	2	Local	3

				Counter()	Anon	4	Anon	5	Anon	6	Anon	7

				Counter()	SAM	8	SAM	9	SAM	10	SAM	11

		"""

}

A	Counter	keeps	track	of	a	count	and	returns	the	next	Int	value.	new(),	new2()
and	new3()	each	create	a	different	implementation	of	the	Counter	interface.



new()	returns	an	instance	of	a	named	inner	class,	new2()	returns	an	instance	of
an	anonymous	inner	class,	and	new3()	uses	a	SAM	conversion	to	create	an
anonymous	object.	All	the	resulting	Counter	objects	have	implicit	access	to	the
elements	of	the	outer	object,	thus	they	are	inner	classes	and	not	just	nested
classes.	You	can	see	from	the	output	that	count	in	CounterFactory	is	shared	by
all	Counter	objects.

SAM	conversions	are	limited—for	example,	they	do	not	support	init	clauses.

-

In	Kotlin,	files	can	contain	multiple	top-level	classes	and	functions.	Because	of
this,	there’s	rarely	a	need	for	local	classes,	so	if	you	do	need	them	they	should	be
basic	and	straightforward.	For	example,	it’s	reasonable	to	create	a	simple	data
class	that’s	only	used	inside	a	function.	If	a	local	class	becomes	complex,	you
should	probably	take	it	out	of	the	function	and	make	it	a	regular	class.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Companion	Objects

Member	functions	act	on	particular	instances	of	a	class.	Some	functions
aren’t	“about”	an	object,	so	they	don’t	need	to	be	tied	to	that	object.

Functions	and	fields	inside	companion	objects	are	about	the	class.	Regular
class	elements	can	access	the	elements	of	the	companion	object,	but	the
companion	object	elements	cannot	access	the	regular	class	elements.

As	you	saw	in	Objects,	it’s	possible	to	define	a	regular	object	inside	a	class,	but
that	doesn’t	provide	an	association	between	the	object	and	the	class.	In
particular,	you’re	forced	to	explicitly	name	the	nested	object	when	you	refer	to
its	members.	If	you	define	a	companion	object	inside	a	class,	its	elements
become	transparently	available	to	that	class:

//	CompanionObjects/CompanionObject.kt

package	companionobjects

import	atomictest.eq

class	WithCompanion	{

		companion	object	{

				val	i	=	3

				fun	f()	=	i	*	3

		}

		fun	g()	=	i	+	f()

}

fun	WithCompanion.Companion.h()	=	f()	*	i

fun	main()	{

		val	wc	=	WithCompanion()

		wc.g()	eq	12

		WithCompanion.i	eq	3

		WithCompanion.f()	eq	9

		WithCompanion.h()	eq	27

}

Outside	the	class,	you	access	members	of	the	companion	object	using	the	class
name,	as	in	WithCompanion.i	and	WithCompanion.f().	Other	members	of	the
class	can	access	the	companion	object	elements	without	qualification,	as	you	see
in	the	definition	of	g().

h()	is	an	extension	function	to	the	companion	object.



If	a	function	doesn’t	require	access	to	private	class	members,	you	can	choose	to
define	it	at	file	scope	rather	than	putting	it	in	a	companion	object.

Only	one	companion	object	is	allowed	per	class.	For	clarity,	you	can	give	the
companion	object	a	name:

//	CompanionObjects/NamingCompanionObjects.kt

package	companionobjects

import	atomictest.eq

class	WithNamed	{

		companion	object	Named	{

				fun	s()	=	"from	Named"

		}

}

class	WithDefault	{

		companion	object	{

				fun	s()	=	"from	Default"

		}

}

fun	main()	{

		WithNamed.s()	eq	"from	Named"

		WithNamed.Named.s()	eq	"from	Named"

		WithDefault.s()	eq	"from	Default"

		//	The	default	name	is	"Companion":

		WithDefault.Companion.s()	eq	"from	Default"

}

Even	when	you	name	the	companion	object	you	can	still	access	its	elements
without	using	the	name.	If	you	don’t	give	the	companion	object	a	name,	Kotlin
assigns	it	the	name	Companion.

If	you	create	a	property	inside	a	companion	object,	it	produces	a	single	piece	of
storage	for	that	field,	shared	with	all	instances	of	the	associated	class:

//	CompanionObjects/ObjectProperty.kt

package	companionobjects

import	atomictest.eq

class	WithObjectProperty	{

		companion	object	{

				private	var	n:	Int	=	0	//	Only	one

		}

		fun	increment()	=	++n

}

fun	main()	{

		val	a	=	WithObjectProperty()

		val	b	=	WithObjectProperty()

		a.increment()	eq	1

		b.increment()	eq	2

		a.increment()	eq	3

}



The	tests	in	main()	show	that	n	has	only	a	single	piece	of	storage,	no	matter	how
many	instances	of	WithObjectProperty	are	created.	a	and	b	both	access	the
same	memory	for	n.

increment()	shows	that	you	can	access	private	members	of	the	companion
object	from	its	surrounding	class.

When	a	function	is	only	accessing	properties	in	the	companion	object,	it	makes
sense	to	move	that	function	inside	the	companion	object:

//	CompanionObjects/ObjectFunctions.kt

package	companionobjects

import	atomictest.eq

class	CompanionObjectFunction	{

		companion	object	{

				private	var	n:	Int	=	0

				fun	increment()	=	++n

		}

}

fun	main()	{

		CompanionObjectFunction.increment()	eq	1

		CompanionObjectFunction.increment()	eq	2

}

You	no	longer	need	a	CompanionObjectFunction	instance	to	call	increment().

Suppose	you’d	like	to	keep	a	count	of	every	object	you	create,	to	give	each	one	a
unique	readable	identifier:

//	CompanionObjects/ObjectCounter.kt

package	companionobjects

import	atomictest.eq

class	Counted	{

		companion	object	{

				private	var	count	=	0

		}

		private	val	id	=	count++

		override	fun	toString()	=	"#$id"

}

fun	main()	{

		List(4)	{	Counted()	}	eq	"[#0,	#1,	#2,	#3]"

}

A	companion	object	can	be	an	instance	of	a	class	defined	elsewhere:

//	CompanionObjects/CompanionInstance.kt

package	companionobjects

import	atomictest.*



interface	ZI	{

		fun	f():	String

		fun	g():	String

}

open	class	ZIOpen	:	ZI	{

		override	fun	f()	=	"ZIOpen.f()"

		override	fun	g()	=	"ZIOpen.g()"

}

class	ZICompanion	{

		companion	object:	ZIOpen()

		fun	u()	=	trace("${f()}	${g()}")

}

class	ZICompanionInheritance	{

		companion	object:	ZIOpen()	{

				override	fun	g()	=

						"ZICompanionInheritance.g()"

				fun	h()	=	"ZICompanionInheritance.h()"

		}

		fun	u()	=	trace("${f()}	${g()}	${h()}")

}

class	ZIClass	{

		companion	object:	ZI	{

				override	fun	f()	=	"ZIClass.f()"

				override	fun	g()	=	"ZIClass.g()"

		}

		fun	u()	=	trace("${f()}	${g()}")

}

fun	main()	{

		ZIClass.f()

		ZIClass.g()

		ZIClass().u()

		ZICompanion.f()

		ZICompanion.g()

		ZICompanion().u()

		ZICompanionInheritance.f()

		ZICompanionInheritance.g()

		ZICompanionInheritance().u()

		trace	eq	"""

				ZIClass.f()	ZIClass.g()

				ZIOpen.f()	ZIOpen.g()

				ZIOpen.f()

				ZICompanionInheritance.g()

				ZICompanionInheritance.h()

		"""

}

ZICompanion	uses	a	ZIOpen	object	as	its	companion	object,	and
ZICompanionInheritance	creates	a	ZIOpen	object	while	overriding	and
extending	ZIOpen.	ZIClass	shows	that	you	can	implement	an	interface	while
creating	the	companion	object.

If	the	class	you	want	to	use	as	a	companion	object	is	not	open,	you	cannot	use	it
directly	as	we	did	above.	However,	if	that	class	implements	an	interface	you	can



still	use	it	via	Class	Delegation:

//	CompanionObjects/CompanionDelegation.kt

package	companionobjects

import	atomictest.*

class	ZIClosed	:	ZI	{

		override	fun	f()	=	"ZIClosed.f()"

		override	fun	g()	=	"ZIClosed.g()"

}

class	ZIDelegation	{

		companion	object:	ZI	by	ZIClosed()

		fun	u()	=	trace("${f()}	${g()}")

}

class	ZIDelegationInheritance	{

		companion	object:	ZI	by	ZIClosed()	{

				override	fun	g()	=

						"ZIDelegationInheritance.g()"

				fun	h()	=

						"ZIDelegationInheritance.h()"

		}

		fun	u()	=	trace("${f()}	${g()}	${h()}")

}

fun	main()	{

		ZIDelegation.f()

		ZIDelegation.g()

		ZIDelegation().u()

		ZIDelegationInheritance.f()

		ZIDelegationInheritance.g()

		ZIDelegationInheritance().u()

		trace	eq	"""

				ZIClosed.f()	ZIClosed.g()

				ZIClosed.f()

				ZIDelegationInheritance.g()

				ZIDelegationInheritance.h()

		"""

}

ZIDelegationInheritance	shows	that	you	can	take	the	non-open	class
ZIClosed,	delegate	it,	then	override	and	extend	that	delegate.	Delegation
forwards	the	methods	of	an	interface	to	the	instance	that	provides	an
implementation.	Even	if	the	class	of	that	instance	is	final,	we	can	still	override
and	add	methods	to	the	delegation	receiver.

Here’s	a	small	brain-teaser:

//	CompanionObjects/DelegateAndExtend.kt

package	companionobjects

import	atomictest.eq

interface	Extended:	ZI	{

		fun	u():	String

}



class	Extend	:	ZI	by	Companion,	Extended	{

		companion	object:	ZI	{

				override	fun	f()	=	"Extend.f()"

				override	fun	g()	=	"Extend.g()"

		}

		override	fun	u()	=	"${f()}	${g()}"

}

private	fun	test(e:	Extended):	String	{

		e.f()

		e.g()

		return	e.u()

}

fun	main()	{

		test(Extend())	eq	"Extend.f()	Extend.g()"

}

In	Extend,	the	ZI	interface	is	implemented	using	its	own	companion	object,
which	has	the	default	name	Companion.	But	we	are	also	implementing	the
Extended	interface,	which	is	the	ZI	interface	plus	an	extra	function	u().	The	ZI
portion	of	Extended	is	already	implemented,	via	Companion,	so	we	only	need	to
override	the	additional	function	u()	to	complete	Extend.	Now	an	Extend	object
can	be	upcast	to	Extended	as	the	argument	to	test().

A	common	use	for	a	companion	object	is	controlling	object	creation—this	is	the
Factory	Method	pattern.	Suppose	you’d	like	to	only	allow	the	creation	of	Lists
of	Numbered2	objects,	and	not	individual	Numbered2	objects:

//	CompanionObjects/CompanionFactory.kt

package	companionobjects

import	atomictest.eq

class	Numbered2

private	constructor(private	val	id:	Int)	{

		override	fun	toString():	String	=	"#$id"

		companion	object	Factory	{

				fun	create(size:	Int)	=

						List(size)	{	Numbered2(it)	}

		}

}

fun	main()	{

		Numbered2.create(0)	eq	"[]"

		Numbered2.create(5)	eq

				"[#0,	#1,	#2,	#3,	#4]"

}

The	Numbered2	constructor	is	private.	This	means	there’s	only	one	way	to
create	an	instance—via	the	create()	factory	function.	A	factory	function	can
sometimes	solve	problems	that	regular	constructors	cannot.



Constructors	in	companion	objects	are	initialized	when	the	enclosing	class	is
instantiated	for	the	first	time	in	a	program:

//	CompanionObjects/Initialization.kt

package	companionobjects

import	atomictest.*

class	CompanionInit	{

		companion	object	{

				init	{

						trace("Companion	Constructor")

				}

		}

}

fun	main()	{

		trace("Before")

		CompanionInit()

		trace("After	1")

		CompanionInit()

		trace("After	2")

		CompanionInit()

		trace("After	3")

		trace	eq	"""

				Before

				Companion	Constructor

				After	1

				After	2

				After	3

		"""

}

You	can	see	from	the	output	that	the	companion	object	is	constructed	only	once,
the	first	time	a	CompanionInit()	object	is	created.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



SECTION	VI:	PREVENTING	FAILURE
If	debugging	is	the	process	of	removing	software	bugs,	then	programming
must	be	the	process	of	putting	them	in.—Edsger	Dijkstra



Exception	Handling

Failure	is	always	a	possibility.

Kotlin	finds	basic	errors	when	it	analyzes	your	program.	Errors	that	cannot	be
detected	at	compile	time	must	be	dealt	with	at	runtime.	In	Exceptions,	you
learned	to	throw	exceptions.	In	this	atom,	we	catch	exceptions.

Historically,	failures	were	often	disastrous.	For	example,	programs	written	in	the
C	language	would	simply	stop	working,	lose	their	data,	and	potentially	crash	the
operating	system.

Improved	error	handling	is	a	powerful	way	to	increase	code	reliability.	Error
handling	is	especially	important	when	creating	reusable	program	components.
To	create	a	robust	system,	each	component	must	be	robust.	With	consistent	error
handling,	components	can	reliably	communicate	problems	to	client	code.

Modern	applications	often	use	concurrency,	and	a	concurrent	program	must
survive	non-critical	exceptions.	A	server,	for	example,	should	recover	when	an
open	session	is	terminated	via	an	exception.

Exceptions	conflate	three	activities:

1.	 Error	reporting
2.	 Recovery
3.	 Resource	cleanup

Let’s	consider	each	one.

Reporting
Standard	library	exceptions	are	often	adequate.	For	more	specific	exception
handling,	you	can	inherit	new	exception	types	from	Exception	or	a	subtype:

//	ExceptionHandling/DefiningExceptions.kt

package	exceptionhandling

import	atomictest.*



class	Exception1(

		val	value:	Int

):	Exception("wrong	value:	$value")

open	class	Exception2(

		description:	String

):	Exception(description)

class	Exception3(

		description:	String

):	Exception2(description)

fun	main()	{

		capture	{

				throw	Exception1(13)

		}	eq	"Exception1:	wrong	value:	13"

		capture	{

				throw	Exception3("error")

		}	eq	"Exception3:	error"

}

A	throw	expression,	as	in	main(),	requires	an	instance	of	a	Throwable	subtype.
To	define	new	exception	types,	inherit	Exception	(which	extends	Throwable).
Both	Exception1	and	Exception2	inherit	Exception,	while	Exception3	inherits
Exception2.

Recovery
The	ambition	of	exception	handling	is	recovery.	This	means	that	you	fix	the
problem,	return	the	program	to	a	stable	state,	and	resume	execution.	Recovery
often	includes	logging	information	about	the	error.

Quite	often,	recovery	isn’t	possible.	An	exception	might	represent	an
unrecoverable	program	failure,	either	a	coding	error	or	something	uncontrollable
in	the	environment.

When	an	exception	is	thrown,	the	exception-handling	mechanism	looks	for	an
appropriate	place	to	continue	execution.	An	exception	keeps	moving	out	to
higher	levels,	from	function1()	that	threw	the	exception,	to	function2()	that
calls	function1(),	to	function3()	that	calls	function2(),	and	so	on	until
reaching	main().	A	matching	handler	catches	the	exception.	This	stops	the
search	and	runs	that	handler.	If	the	program	never	finds	a	matching	handler,	it
terminates	with	a	console	stack	trace.

//	ExceptionHandling/Stacktrace.kt

package	stacktrace

import	exceptionhandling.Exception1

fun	function1():	Int	=

		throw	Exception1(-52)



fun	function2()	=	function1()

fun	function3()	=	function2()

fun	main()	{

//		function3()

}

Uncommenting	the	call	to	function3()	produces	the	following	stack	trace:

Exception	in	thread	"main"	exceptionhandling.Exception1:	wrong	value:	-\

52

		at	stacktrace.StacktraceKt.function1(Stacktrace.kt:6)

		at	stacktrace.StacktraceKt.function2(Stacktrace.kt:8)

		at	stacktrace.StacktraceKt.function3(Stacktrace.kt:10)

		at	stacktrace.StacktraceKt.main(Stacktrace.kt:13)

		at	stacktrace.StacktraceKt.main(Stacktrace.kt)

Any	of	function1(),	function2()	or	function3()	can	catch	the	exception	and
handle	it,	preventing	the	exception	from	terminating	the	program.

An	exception	handler	is	the	catch	keyword	followed	by	a	parameter	list
containing	the	exception	you’re	handling.	This	is	followed	by	a	block	of	code
implementing	the	recovery.

In	the	following	example,	the	function	toss()	produces	different	exceptions	for
arguments	1-3,	otherwise	it	returns	“OK”.	test()	contains	a	complete	set	of
handlers	for	the	toss()	function:

//	ExceptionHandling/Handlers.kt

package	exceptionhandling

import	atomictest.eq

fun	toss(which:	Int)	=	when	(which)	{

		1	->	throw	Exception1(1)

		2	->	throw	Exception2("Exception	2")

		3	->	throw	Exception3("Exception	3")

		else	->	"OK"

}

fun	test(which:	Int):	Any?	=

		try	{

				toss(which)

		}	catch	(e:	Exception1)	{

				e.value

		}	catch	(e:	Exception3)	{

				e.message

		}	catch	(e:	Exception2)	{

				e.message

		}

fun	main()	{

		test(0)	eq	"OK"

		test(1)	eq	1



		test(2)	eq	"Exception	2"

		test(3)	eq	"Exception	3"

}

When	you	call	toss()	you	must	catch	all	relevant	toss()	exceptions,	allowing
non-relevant	exceptions	to	“bubble	up”	and	be	caught	elsewhere.

The	entire	try-catch	in	test()	is	a	single	expression:	it	returns	either	the	last
expression	of	the	try	body	or	the	last	expression	of	the	catch	clause	matching
an	exception.	If	no	catch	handles	the	exception,	that	exception	is	thrown	further
up	the	stack.	If	uncaught,	it	generates	a	stack	trace.

Because	Exception3	extends	Exception2,	an	Exception3	is	handled	as	an
Exception2	if	Exception2’s	catch	appears	in	the	sequence	of	handlers	before
Exception3’s	catch:

//	ExceptionHandling/Hierarchy.kt

package	exceptionhandling

import	atomictest.eq

fun	testCatchOrder(which:	Int)	=

		try	{

				toss(which)

		}	catch	(e:	Exception2)	{				//	[1]

				"Handler	for	Exception2	got	${e.message}"

		}	catch	(e:	Exception3)	{				//	[2]

				"Handler	for	Exception3	got	${e.message}"

		}

fun	main()	{

		testCatchOrder(2)	eq

				"Handler	for	Exception2	got	Exception	2"

		testCatchOrder(3)	eq

				"Handler	for	Exception2	got	Exception	3"

}

The	catch-clause	order	means	an	Exception3	is	caught	by	line	[1],	despite	the
more	specific	type	of	exception	handler	in	line	[2].

Exception	Subtypes
In	testCode(),	an	incorrect	code	argument	throws	an
IllegalArgumentException:

//	ExceptionHandling/LibraryException.kt

package	exceptionhandling

import	atomictest.*

fun	testCode(code:	Int)	{

		if	(code	<=	1000)	{

				throw	IllegalArgumentException(



						"'code'	must	be	>	1000:	$code")

		}

}

fun	main()	{

		try	{

				//	A1	is	161	in	base-16	(hex)	notation:

				testCode("A1".toInt(16))

		}	catch	(e:	IllegalArgumentException)	{

				e.message	eq

						"'code'	must	be	>	1000:	161"

		}

		try	{

				testCode("0".toInt(1))

		}	catch	(e:	IllegalArgumentException)	{

				e.message	eq

						"radix	1	was	not	in	valid	range	2..36"

		}

}

An	IllegalArgumentException	is	thrown	by	both	testCode()	and	the	library
function	toInt(radix).	This	results	in	the	somewhat	confusing	error	messages
in	main().	The	problem	is	that	we	are	using	the	same	exception	to	represent	two
different	issues.	We	solve	it	by	throwing	a	new	exception	type	called
IncorrectInputException	for	our	error:

//	ExceptionHandling/NewException.kt

package	exceptionhandling

import	atomictest.eq

class	IncorrectInputException(

		message:	String

):	Exception(message)

fun	checkCode(code:	Int)	{

		if	(code	<=	1000)	{

				throw	IncorrectInputException(

						"Code	must	be	>	1000:	$code")

		}

}

fun	main()	{

		try	{

				checkCode("A1".toInt(16))

		}	catch	(e:	IncorrectInputException)	{

				e.message	eq	"Code	must	be	>	1000:	161"

		}	catch	(e:	IllegalArgumentException)	{

				"Produces	error"	eq	"if	it	gets	here"

		}

		try	{

				checkCode("1".toInt(1))

		}	catch	(e:	IncorrectInputException)	{

				"Produces	error"	eq	"if	it	gets	here"

		}	catch	(e:	IllegalArgumentException)	{

				e.message	eq

						"radix	1	was	not	in	valid	range	2..36"

		}

}



Now	each	issue	has	its	own	handler.

Resist	creating	too	many	exception	types.	As	a	rule	of	thumb,	use	different
exception	types	to	distinguish	different	handling	schemes,	and	use	different
constructor	parameters	to	provide	details	for	a	particular	handling	scheme.

Resource	Cleanup
When	failure	is	inevitable,	automatic	resource	cleanup	helps	other	parts	of	the
program	to	continue	running	safely.

finally	ensures	resource	cleanup	during	exception	handling.	A	finally	clause
always	runs,	regardless	of	whether	you	leave	a	try	block	normally	or
exceptionally:

//	ExceptionHandling/TryFinally.kt

package	exceptionhandling

import	atomictest.*

fun	checkValue(value:	Int)	{

		try	{

				trace(value)

				if	(value	<=	0)

						throw	IllegalArgumentException(

								"value	must	be	positive:	$value")

		}	finally	{

				trace("In	finally	clause	for	$value")

		}

}

fun	main()	{

		listOf(10,	-10).forEach	{

				try	{

						checkValue(it)

				}	catch	(e:	IllegalArgumentException)	{

						trace("In	catch	clause	for	main()")

						trace(e.message)

				}

		}

		trace	eq	"""

				10

				In	finally	clause	for	10

				-10

				In	finally	clause	for	-10

				In	catch	clause	for	main()

				value	must	be	positive:	-10

		"""

}

finally	works	even	with	intermediate	catch	clauses.	For	example,	suppose	a
switch	must	be	turned	off	when	you’re	done	with	it:



//	ExceptionHandling/GuaranteedCleanup.kt

package	exceptionhandling

import	atomictest.eq

data	class	Switch(

		var	on:	Boolean	=	false,

		var	result:	String	=	"OK"

)

fun	testFinally(i:	Int):	Switch	{

		val	sw	=	Switch()

		try	{

				sw.on	=	true

				when	(i)	{

						0	->	throw	IllegalStateException()

						1	->	return	sw																	//	[1]

				}

		}	catch	(e:	IllegalStateException)	{

				sw.result	=	"exception"

		}	finally	{

				sw.on	=	false

		}

		return	sw

}

fun	main()	{

		testFinally(0)	eq

				"Switch(on=false,	result=exception)"

		testFinally(1)	eq

				"Switch(on=false,	result=OK)"				//	[2]

		testFinally(2)	eq

				"Switch(on=false,	result=OK)"

}

Even	if	we	return	inside	a	try	([1]),	the	finally	clause	still	runs	([2]).	Whether
testFinally()	completes	normally	or	with	an	exception,	the	finally	clause
always	executes.

Exception	Handling	in	AtomicTest
This	book	uses	AtomicTest’s	capture()	to	ensure	that	expected	exceptions	are
thrown.	capture()	takes	a	function	argument	and	returns	a	CapturedException
object	containing	the	exception	class	and	error	message:

//	ExceptionHandling/CaptureImplementation.kt

package	exceptionhandling

import	atomictest.CapturedException

fun	capture(f:()	->	Unit):	CapturedException	=

		try	{																																	//	[1]

				f()

				CapturedException(null,

						"<Error>:	Expected	an	exception")	//	[2]

		}	catch	(e:	Throwable)	{														//	[3]

				CapturedException(e::class,									//	[4]

						if	(e.message	!=	null)	":	${e.message}"

						else	"")

		}



fun	main()	{

		capture	{

				throw	Exception("!!!")

		}	eq	"Exception:	!!!"																	//	[5]

		capture	{

				1

		}	eq	"<Error>:	Expected	an	exception"

}

capture()	calls	its	function	argument	f	within	a	try	block	([1]),	handling	all
possible	exceptions	by	catching	Throwable	([3]).	If	no	exception	is	thrown,	the
CapturedException	message	indicates	that	an	exception	was	expected	([2]).	If
an	exception	is	caught,	the	returned	CapturedException	contains	the	exception
class	and	a	message	([4]).	A	CapturedException	can	be	compared	to	a	String
using	eq	([5]).

Ordinarily	you	won’t	catch	Throwable,	but	will	process	each	specific	exception
type.

Guidelines
Recovering	from	exceptions	turns	out	to	be	remarkably	rare,	considering	that
recovery	was	the	original	intent.	The	primary	purpose	of	exceptions	in	Kotlin	is
to	discover	program	bugs,	not	recovery.	Catching	exceptions	in	ordinary	Kotlin
code	is	thus	a	“code	smell.”

Here	are	guidelines	for	programming	with	exceptions	in	Kotlin:

1.	 Logic	Errors:	These	are	bugs	in	your	code.	Either	don’t	catch	them	at	all
(and	produce	a	stack	trace),	or	catch	them	at	the	top	level	of	your
application	and	report	the	bugs,	possibly	restarting	the	affected	operation.

2.	 Data	Errors:	These	are	errors	from	bad	data	that	the	programmer	cannot
control.	The	application	must	somehow	deal	with	the	problem	without
blaming	it	on	program	logic.	For	example,	we’ve	used	String.toInt()	this
atom,	which	throws	an	exception	for	an	inappropriate	String.	It	also	has	a
companion	String.toIntOrNull()	that	produces	a	null	upon	failure	so
you	can	use	it	in	an	expression	such	as	val	n	=	string.toIntOrNull()
?:	default.

The	Kotlin	library	is	designed	around	dealing	with	a	bad	result	by	returning
a	null	instead	of	throwing	an	exception.	Operations	that	are	expected	to
occasionally	fail	will	usually	have	an	“OrNull”	version	that	you	can	use
instead	of	the	exception	version.



3.	 Check	instructions	test	for	logic	errors.	These	produce	exceptions	when
they	find	a	bug,	but	they	look	like	function	calls	so	you	don’t	explicitly
throw	exceptions	in	your	code.

4.	 Input/Output	Errors:	These	are	external	conditions	that	you	can’t	control
and	you	can’t	ignore.	However,	using	the	“OrNull”	approach	rapidly
obscures	the	understandability	of	the	code.	More	importantly,	you	often	can
recover	from	I/O	errors,	typically	by	retrying	the	operation.	Thus,	I/O
operations	in	Kotlin	throw	exceptions,	so	you’ll	have	code	in	your
applications	that	handle	those	and	attempt	to	recover	from	them.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Check	Instructions

Check	instructions	assert	that	constraints	are	satisfied.	They	are	commonly
used	to	validate	function	arguments	and	results.

Check	instructions	discover	programming	errors	by	expressing	non-obvious
requirements.	They	can	also	act	as	documentation	for	future	readers	of	that	code.
You’ll	usually	find	check	instructions	at	the	beginning	of	a	function,	to	ensure
that	the	arguments	are	legitimate,	and	at	the	end,	to	check	the	function’s
calculations.

Check	instructions	typically	throw	exceptions	when	they	fail.	You	can	usually
use	check	instructions	instead	of	explicitly	throwing	exceptions.	Check
instructions	are	easier	to	write	and	think	about,	and	produce	more
comprehensible	code.	Use	them	whenever	possible	to	test	and	illuminate	your
programs.

require()

Design	By	Contract	preconditions	guarantee	initialization	constraints.	Kotlin’s
require()	is	normally	used	to	validate	function	arguments,	so	it	typically
appears	at	the	beginning	of	function	bodies.	These	tests	cannot	be	checked	at
compile	time.	Preconditions	are	relatively	easy	to	include	in	your	code,	but
sometimes	they	can	be	turned	into	unit	tests.

Consider	a	numerical	field	representing	a	month	on	the	Julian	calendar.	You
know	this	value	must	always	be	in	the	range	1..12.	A	precondition	reports	an
error	if	the	value	falls	outside	that	range:

//	CheckInstructions/JulianMonth.kt

package	checkinstructions

import	atomictest.*

data	class	Month(val	monthNumber:	Int)	{

		init	{

				require(monthNumber	in	1..12)	{

						"Month	out	of	range:	$monthNumber"

				}

		}

}

https://en.wikipedia.org/wiki/Design_by_contract


fun	main()	{

		Month(1)	eq	"Month(monthNumber=1)"

		capture	{	Month(13)	}	eq

				"IllegalArgumentException:	"	+

				"Month	out	of	range:	13"

}

We	perform	the	require()	inside	the	constructor.	require()	throws	an
IllegalArgumentException	if	its	condition	isn’t	satisfied.	You	can	always	use
require()	instead	of	throwing	IllegalArgumentException.

The	second	parameter	for	require()	is	a	lambda	that	produces	a	String.	If	the
String	requires	construction,	that	overhead	doesn’t	occur	unless	require()
fails.

When	the	arguments	for	Quadratic.kt	from	Summary	2	are	inappropriate,	it
throws	IllegalArgumentException.	We	can	simplify	the	code	using	require():

//	CheckInstructions/QuadraticRequire.kt

package	checkinstructions

import	kotlin.math.sqrt

import	atomictest.*

class	Roots(

		val	root1:	Double,

		val	root2:	Double

)

fun	quadraticZeroes(

		a:	Double,

		b:	Double,

		c:	Double

):	Roots	{

		require(a	!=	0.0)	{	"a	is	zero"	}

		val	underRadical	=	b	*	b	-	4	*	a	*	c

		require(underRadical	>=	0)	{

				"Negative	underRadical:	$underRadical"

		}

		val	squareRoot	=	sqrt(underRadical)

		val	root1	=	(-b	-	squareRoot)	/	2	*	a

		val	root2	=	(-b	+	squareRoot)	/	2	*	a

		return	Roots(root1,	root2)

}

fun	main()	{

		capture	{

				quadraticZeroes(0.0,	4.0,	5.0)

		}	eq	"IllegalArgumentException:	"	+

				"a	is	zero"

		capture	{

				quadraticZeroes(3.0,	4.0,	5.0)

		}	eq	"IllegalArgumentException:	"	+

				"Negative	underRadical:	-44.0"

		val	roots	=	quadraticZeroes(3.0,	8.0,	5.0)

		roots.root1	eq	-15.0

		roots.root2	eq	-9.0

}



This	code	is	much	clearer	and	cleaner	than	the	original	Quadratic.kt.

The	following	DataFile	class	allows	us	to	work	with	files	regardless	of	whether
the	examples	run	in	the	IDE	via	the	AtomicKotlin	course	or	in	the	standalone
build	for	the	book.	All	DataFile	objects	store	their	files	in	the	targetDir
subdirectory:

//	CheckInstructions/DataFile.kt

package	checkinstructions

import	atomictest.eq

import	java.io.File

import	java.nio.file.Paths

val	targetDir	=	File("DataFiles")

class	DataFile(val	fileName:	String)	:

		File(targetDir,	fileName)	{

		init	{

				if	(!targetDir.exists())

						targetDir.mkdir()

		}

		fun	erase()	{	if	(exists())	delete()	}

		fun	reset():	File	{

				erase()

				createNewFile()

				return	this

		}

}

fun	main()	{

		DataFile("Test.txt").reset()	eq

				Paths.get("DataFiles",	"Test.txt")

						.toString()

}

A	DataFile	manipulates	the	underlying	file	in	the	operating	system	to	write	and
read	that	file.	The	base	class	for	DataFile	is	java.io.File,	which	is	one	of	the
oldest	classes	in	the	Java	library;	it	appeared	in	the	first	version	of	the	language,
back	when	they	thought	it	was	a	great	idea	to	use	the	same	class	(File)	to
represent	both	files	and	directories.	Kotlin	can	effortlessly	inherit	File,	despite
its	antiquity.

During	construction,	we	create	targetDir	if	it	doesn’t	exist.	The	erase()
function	deletes	the	file,	while	reset()	deletes	the	file	and	creates	a	new,	empty
file.

The	Java	standard	library	Paths	class	contains	only	an	overloaded	get().	The
version	of	get()	we	want	takes	any	number	of	Strings	and	builds	a	Path	object,
representing	a	directory	path	that	is	independent	of	the	operating	system.



Opening	a	file	often	has	a	number	of	preconditions,	usually	involving	file	paths,
naming,	and	contents.	Consider	a	function	that	opens	and	reads	a	file	with	a
name	beginning	with	file_.	Using	require(),	we	verify	that	the	file	name	is
correct	and	that	the	file	exists	and	is	not	empty:

//	CheckInstructions/GetTrace.kt

package	checkinstructions

import	atomictest.*

fun	getTrace(fileName:	String):	List<String>	{

		require(fileName.startsWith("file_"))	{

				"$fileName	must	start	with	'file_'"

		}

		val	file	=	DataFile(fileName)

		require(file.exists())	{

				"$fileName	doesn't	exist"

		}

		val	lines	=	file.readLines()

		require(lines.isNotEmpty())	{

				"$fileName	is	empty"

		}

		return	lines

}

fun	main()	{

		DataFile("file_empty.txt").writeText("")

		DataFile("file_wubba.txt").writeText(

				"wubba	lubba	dub	dub")

		capture	{

				getTrace("wrong_name.txt")

		}	eq	"IllegalArgumentException:	"	+

				"wrong_name.txt	must	start	with	'file_'"

		capture	{

				getTrace("file_nonexistent.txt")

		}	eq	"IllegalArgumentException:	"	+

				"file_nonexistent.txt	doesn't	exist"

		capture	{

				getTrace("file_empty.txt")

		}	eq	"IllegalArgumentException:	"	+

				"file_empty.txt	is	empty"

		getTrace("file_wubba.txt")	eq

				"[wubba	lubba	dub	dub]"

}

We’ve	been	using	the	two-parameter	version	of	require(),	but	there’s	also	a
single-parameter	version	that	produces	a	default	message:

//	CheckInstructions/SingleArgRequire.kt

package	checkinstructions

import	atomictest.*

fun	singleArgRequire(arg:	Int):	Int	{

		require(arg	>	5)

		return	arg

}

fun	main()	{

		capture	{



				singleArgRequire(5)

		}	eq	"IllegalArgumentException:	"	+

				"Failed	requirement."

		singleArgRequire(6)	eq	6

}

The	failure	message	is	not	as	explicit	as	the	two-parameter	version,	but	in	some
cases	it	is	sufficient.

requireNotNull()

requireNotNull()	tests	its	first	argument	and	returns	that	argument	if	it	is	not
null.	Otherwise,	it	produces	an	IllegalArgumentException.

Upon	success,	requireNotNull()’s	argument	is	automatically	smart-cast	to	a
non-nullable	type.	Thus,	you	usually	don’t	need	requireNotNull()’s	return
value:

//	CheckInstructions/RequireNotNull.kt

package	checkinstructions

import	atomictest.*

fun	notNull(n:	Int?):	Int	{

		requireNotNull(n)	{													//	[1]

				"notNull()	argument	cannot	be	null"

		}

		return	n	*	9																				//	[2]

}

fun	main()	{

		val	n:	Int?	=	null

		capture	{

				notNull(n)

		}	eq	"IllegalArgumentException:	"	+

				"notNull()	argument	cannot	be	null"

		capture	{

				requireNotNull(n)													//	[3]

		}	eq	"IllegalArgumentException:	"	+

				"Required	value	was	null."

		notNull(11)	eq	99

}

[2]	Notice	that	n	no	longer	requires	a	null	check,	because	the	call	to
requireNotNull()	has	made	it	non-nullable.

As	with	require(),	there’s	a	two-parameter	version	with	a	message	you	can
craft	yourself	([1]),	and	a	single-parameter	version	with	a	default	message	([3]).
Because	requireNotNull()	tests	for	a	specific	issue	(nullity),	the	single-
parameter	version	is	more	useful	than	it	is	with	require().

check()



A	design-by-contract	postcondition	tests	the	results	of	a	function.	Postconditions
are	important	for	long,	complex	functions	where	you	might	not	trust	the	results.
Whenever	you	can	describe	constraints	on	the	results	of	a	function,	it’s	wise	to
express	them	as	a	postcondition.

check()	is	identical	to	require()	except	that	it	throws
IllegalStateException.	It	is	typically	used	at	the	end	of	a	function,	to	verify
that	the	results	(or	the	fields	in	the	function’s	object)	are	valid—that	things
haven’t	somehow	gotten	into	a	bad	state.

Suppose	a	complex	function	writes	to	a	file,	and	you	are	unsure	whether	all
execution	paths	will	create	that	file.	Adding	a	postcondition	at	the	end	of	the
function	helps	ensure	correctness:

//	CheckInstructions/Postconditions.kt

package	checkinstructions

import	atomictest.*

val	resultFile	=	DataFile("Results.txt")

fun	createResultFile(create:	Boolean)	{

		if	(create)

				resultFile.writeText("Results\n#	ok")

		//	...	other	execution	paths

		check(resultFile.exists())	{

				"${resultFile.name}	doesn't	exist!"

		}

}

fun	main()	{

		resultFile.erase()

		capture	{

				createResultFile(false)

		}	eq	"IllegalStateException:	"	+

				"Results.txt	doesn't	exist!"

		createResultFile(true)

}

Assuming	your	preconditions	ensure	valid	arguments,	a	postcondition	failure
almost	always	indicates	a	programming	error.	For	this	reason,	you’ll	see
postconditions	less	often	because,	once	the	programmer	is	convinced	the	code	is
correct,	the	postcondition	can	be	commented	or	removed	if	it	impacts
performance.	Of	course,	it’s	always	best	to	leave	such	tests	in	place	so	problems
caused	by	future	code	changes	are	immediately	detected.	One	way	to	do	this	is
by	moving	postconditions	into	unit	tests.

assert()



To	avoid	commenting	and	uncommenting	check()	statements,	assert()	allows
you	to	enable	and	disable	assert()	checks.

assert()	comes	from	Java.	Assertions	are	disabled	by	default,	and	are	only
engaged	if	you	explicitly	turn	them	on	using	a	command-line	flag.	In	Kotlin,	this
flag	is	-ea.

We	recommend	using	require()	and	check(),	which	are	always	available
without	special	configuration.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



The	Nothing	Type

A	Nothing	return	type	indicates	a	function	that	never	returns

This	is	usually	a	function	that	always	throws	an	exception.

Here’s	a	function	that	produces	an	infinite	loop	(avoid	these)—because	it	never
returns,	its	return	type	is	Nothing:

//	NothingType/InfiniteLoop.kt

package	nothingtype

fun	infinite():	Nothing	{

		while	(true)	{}

}

Nothing	is	a	built-in	Kotlin	type	with	no	instances.

A	practical	example	is	the	built-in	TODO(),	which	has	a	return	type	of	Nothing
and	throws	NotImplementedError:

//	NothingType/Todo.kt

package	nothingtype

import	atomictest.*

fun	later(s:	String):	String	=	TODO("later()")

fun	later2(s:	String):	Int	=	TODO()

fun	main()	{

		capture	{

				later("Hello")

		}	eq	"NotImplementedError:	"	+

				"An	operation	is	not	implemented:	later()"

		capture	{

				later2("Hello!")

		}	eq	"NotImplementedError:	"	+

				"An	operation	is	not	implemented."

}

Both	later()	and	later2()	return	non-Nothing	types	even	though	TODO()
returns	Nothing.	Nothing	is	compatible	with	any	type.

later()	and	later2()	compile	successfully.	If	you	call	either	one,	an	exception
reminds	you	to	write	implementations.	TODO()	is	a	useful	tool	for	“sketching”	a



code	framework	to	verify	that	everything	fits	together	before	filling	in	the
details.

In	the	following,	fail()	always	throws	an	Exception	so	it	returns	Nothing.
Notice	that	a	call	to	fail()	is	more	readable	and	compact	than	explicitly
throwing	an	exception:

//	NothingType/Fail.kt

package	nothingtype

import	atomictest.*

fun	fail(i:	Int):	Nothing	=

		throw	Exception("fail($i)")

fun	main()	{

		capture	{

				fail(1)

		}	eq	"Exception:	fail(1)"

		capture	{

				fail(2)

		}	eq	"Exception:	fail(2)"

}

fail()	allows	you	to	easily	change	the	error-handling	strategy.	For	example,
you	can	change	the	exception	type	or	log	an	additional	message	before	throwing
an	exception.

This	throws	a	BadData	exception	if	the	argument	is	not	a	String:

//	NothingType/CheckObject.kt

package	nothingtype

import	atomictest.*

class	BadData(m:	String)	:	Exception(m)

fun	checkObject(obj:	Any?):	String	=

		if	(obj	is	String)

				obj

		else

				throw	BadData("Needs	String,	got	$obj")

fun	test(checkObj:	(obj:	Any?)	->	String)	{

		checkObj("abc")	eq	"abc"

		capture	{

				checkObj(null)

		}	eq	"BadData:	Needs	String,	got	null"

		capture	{

				checkObj(123)

		}	eq	"BadData:	Needs	String,	got	123"

}

fun	main()	{

		test(::checkObject)

}



checkObject()’s	return	type	is	the	return	type	of	the	if	expression.	Kotlin	treats
a	throw	as	type	Nothing,	and	Nothing	can	be	assigned	to	any	type.	In
checkObject(),	String	takes	priority	over	Nothing,	so	the	type	of	the	if
expression	is	String.

We	can	rewrite	checkObject()	using	a	safe	cast	and	an	Elvis	operator.
checkObject2()	casts	obj	to	a	String	if	it	can	be	cast,	otherwise	it	throws	an
exception:

//	NothingType/CheckObject2.kt

package	nothingtype

fun	failWithBadData(obj:	Any?):	Nothing	=

		throw	BadData("Needs	String,	got	$obj")

fun	checkObject2(obj:	Any?):	String	=

		(obj	as?	String)	?:	failWithBadData(obj)

fun	main()	{

		test(::checkObject2)

}

When	given	a	plain	null	with	no	additional	type	information,	the	compiler	infers
a	nullable	Nothing:

//	NothingType/ListOfNothing.kt

import	atomictest.eq

fun	main()	{

		val	none:	Nothing?	=	null

		var	nullableString:	String?	=	null				//	[1]

		nullableString	=	"abc"

		nullableString	=	none																	//	[2]

		nullableString	eq	null

		val	nullableInt:	Int?	=	none										//	[3]

		nullableInt	eq	null

		val	listNone:	List<Nothing?>	=	listOf(null)

		val	ints:	List<Int?>	=	listOf(null)			//	[4]

		ints	eq	listNone

}

You	can	assign	both	null	and	none	to	a	var	or	val	of	a	nullable	type,	such	as
nullableString	or	nullableInt.	This	is	allowed	because	the	type	of	both	null
and	none	is	Nothing?	(nullable	Nothing).	In	the	same	way	that	an	expression	of
the	Nothing	type	(for	example,	fail())	can	be	interpreted	as	“any	type,”	an
expression	of	the	Nothing?	type,	such	as	null,	can	be	interpreted	as	“any
nullable	type.”	Assignments	to	different	nullable	types	are	shown	in	lines	[1],	[2]
and	[3].



listNone	is	initialized	with	a	List	containing	only	the	null	value.	The	compiler
infers	this	to	be	List<Nothing?>.	For	this	reason,	you	must	explicitly	specify	the
element	type	([4])	that	you	want	to	store	in	the	List	when	you	initialize	it	with
only	null.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Resource	Cleanup

Using	try-finally	blocks	for	resource	cleanup	is	tedious	and	error-prone.
Kotlin’s	library	functions	manage	cleanup	for	you.

As	you	learned	in	Exception	Handling,	the	finally	clause	cleans	up	resources
regardless	of	how	the	try	block	exits.	But	what	if	an	exception	can	happen	while
closing	a	resource?	You	end	up	with	another	try	inside	the	finally	clause.	On
top	of	that,	if	one	exception	is	thrown	inside	a	try	and	another	while	closing	the
resource,	the	latter	shouldn’t	conceal	the	former.	Ensuring	proper	cleanup
becomes	very	messy.

To	reduce	this	complexity,	Kotlin’s	use()	guarantees	proper	cleanup	of	closeable
resources,	liberating	you	from	handwritten	cleanup	code.

use()	works	with	any	object	that	implements	Java’s	AutoCloseable	interface.	It
executes	the	code	within	the	block,	then	calls	close()	on	the	object,	regardless
of	how	you	exit	the	block—either	normally	(including	via	return),	or	through
an	exception.

use()	rethrows	all	exceptions,	so	you	must	still	deal	with	those	exceptions.

Predefined	classes	that	work	with	use()	are	found	in	the	Java	documentation	for
AutoCloseable.	For	example,	to	read	lines	from	a	File	we	apply	use()	to	a
BufferedReader.	DataFile	from	Check	Instructions	inherits	java.io.File:

//	ResourceCleanup/AutoCloseable.kt

import	atomictest.eq

import	checkinstructions.DataFile

fun	main()	{

		DataFile("Results.txt")

				.bufferedReader()

				.use	{	it.readLines().first()	}	eq

				"Results"

}

useLines()	opens	a	File	object,	extracts	all	its	lines,	and	passes	those	lines	to	a
target	function	(typically	a	lambda):



//	ResourceCleanup/UseLines.kt

import	atomictest.eq

import	checkinstructions.DataFile

fun	main()	{

		DataFile("Results.txt").useLines	{

				it.filter	{	"#"	in	it	}.first()				//	[1]

		}	eq	"#	ok"

		DataFile("Results.txt").useLines	{	lines	->

				lines.filter	{	line	->													//	[2]

						"#"	in	line

				}.first()

		}	eq	"#	ok"

}

[1]	The	left-hand	it	refers	to	the	collection	of	lines	in	the	file,	while	the
right-hand	it	refers	to	each	individual	line.	To	reduce	confusion,	avoid
writing	code	with	two	different	nearby	its.
[2]	Named	arguments	prevent	confusion	from	too	many	its.

Everything	happens	within	the	useLines()	lambda;	outside	the	lambda	the	file
contents	are	unavailable	unless	you	explicitly	return	them.	As	it	closes	the	file,
useLines()	returns	the	result	of	the	lambda.

forEachLine()	makes	it	easy	to	apply	an	action	to	each	line	in	a	file:

//	ResourceCleanup/ForEachLine.kt

import	checkinstructions.DataFile

import	atomictest.*

fun	main()	{

		DataFile("Results.txt").forEachLine	{

				if	(it.startsWith("#"))

						trace("$it")

		}

		trace	eq	"#	ok"

}

The	lambda	in	forEachLine()	returns	Unit,	which	means	that	anything	you	do
with	the	lines	must	be	achieved	through	side	effects.	In	functional	programming,
we	prefer	returning	results	over	side	effects,	and	thus	useLines()	is	a	more
functional	approach	than	forEachLine().	However,	forEachLine()	is	a	quick
solution	for	simple	utilities.

You	can	create	your	own	class	that	works	with	use()	by	implementing	the
AutoCloseable	interface,	which	contains	only	the	close()	function:

//	ResourceCleanup/Usable.kt

package	resourcecleanup

import	atomictest.*



class	Usable()	:	AutoCloseable	{

		fun	func()	=	trace("func()")

		override	fun	close()	=	trace("close()")

}

fun	main()	{

		Usable().use	{	it.func()	}

		trace	eq	"func()	close()"

}

use()	ensures	resource	cleanup	at	the	point	the	resource	is	created,	rather	than
forcing	you	to	write	cleanup	code	when	you’re	finished	with	the	resource.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Logging

Logging	captures	information	from	a	running	program.

For	example,	an	installation	program	might	log:

The	steps	taken	during	setup.
The	directories	for	file	storage.
Startup	values	for	the	program.

A	web	server	might	log	the	origin	address	and	status	of	each	request.

Logging	is	also	helpful	during	debugging.	Without	logging,	you	might	decipher
the	behavior	of	a	program	using	println()	statements.	This	can	be	helpful	in
the	absence	of	a	debugger	(such	as	the	one	built	into	IntelliJ	IDEA).	However,
once	you	decide	the	program	is	working	properly,	you’ll	probably	take	the
println()	statements	out.	Later,	if	you	run	into	more	bugs,	you	might	put	them
back	in.	In	contrast,	logging	can	be	dynamically	enabled	when	you	need	it,	and
turned	off	otherwise.

For	some	failures	you	can	only	report	the	issue.	A	program	that	recovers	from
some	types	of	errors	(as	shown	in	Exception	Handling)	can	log	details	about
those	errors	for	later	analysis.	In	a	web	application,	for	example,	you	don’t
terminate	the	program	if	something	goes	wrong.	Logging	captures	these	events,
giving	programmers	and	administrators	a	way	to	discover	the	problems.
Meanwhile,	the	application	continues	running.

We	use	an	open-source	logging	package	designed	for	Kotlin	called	Kotlin-
logging,	which	has	the	feel	and	simplicity	of	Kotlin.	Note	that	there	are	other
logging	packages	to	choose	from.

You	must	create	a	logger	before	using	it.	You’ll	almost	always	want	to	create	it
at	file	scope	so	it’s	available	to	all	components	in	that	file:

//	Logging/BasicLogging.kt

package	logging

import	mu.KLogging

https://github.com/MicroUtils/kotlin-logging


private	val	log	=	KLogging().logger

fun	main()	{

		val	msg	=	"Hello,	Kotlin	Logging!"

		log.trace(msg)

		log.debug(msg)

		log.info(msg)

		log.warn(msg)

		log.error(msg)

}

main()	shows	the	different	logging	levels:	trace(),	debug()	and	info()	capture
behavioral	information,	while	warn()	and	error()	indicate	problems.

Start-up	configuration	determines	the	logging	levels	that	are	actually	reported.
This	can	be	modified	during	execution.	Operators	of	long-running	applications
can	change	the	logging	level	without	restarting	the	program	(which	is	often
unacceptable).

Logging	libraries	have	a	rather	odd	history.	People	were	dissatisfied	with	the
original	logging	library	distributed	with	Java,	so	they	created	other	libraries.	In
an	attempt	to	unify	logging,	designers	began	developing	common	logging
interfaces.	Acknowledging	that	organizations	may	be	invested	in	existing
logging	libraries,	those	interfaces	were	created	as	facades	for	multiple	different
logging	libraries.	Later,	other	programmers	created	(presumably	improved)
facades	over	those	facades.	Utilizing	a	logging	system	often	means	choosing	a
facade,	then	choosing	one	or	more	underlying	implementations.

The	Kotlin-logging	library	is	a	facade	over	the	Simple	Logging	Facade	for	Java
(SLF4J),	which	is	an	abstraction	over	multiple	logging	frameworks.	You	choose
the	framework	that	meets	your	needs—although	it	is	more	likely	that	the
operations	group	in	your	company	will	make	that	decision,	as	they	are	the	ones
that	usually	manage	logging	and	analyze	the	resulting	log	files.

For	this	example	we	use	slf4j-simple	as	our	implementation.	This	comes	as
part	of	SLF4J	and	thus	we	are	not	required	to	install	or	configure	an	additional
library—some	libraries	have	an	annoying	amount	of	setup	complexity.	slf4j-
simple	sends	its	output	to	the	console	error	stream.	When	you	run	the	program,
you	see:

[main]	INFO	mu.KLogging	-	Hello,	Kotlin	Logging!

[main]	WARN	mu.KLogging	-	Hello,	Kotlin	Logging!

[main]	ERROR	mu.KLogging	-	Hello,	Kotlin	Logging!

https://www.slf4j.org/


trace()	and	debug()	produce	no	output	because	the	default	configuration
doesn’t	report	those	levels.	To	get	different	reporting	levels,	change	your	logging
configuration.	Logging	configuration	varies	depending	on	the	logging	package
you’re	using,	so	we	don’t	talk	about	it	here.

Logging	implementations	that	log	to	files	often	manage	those	log	files	by
automatically	discarding	the	oldest	parts	when	files	get	too	large.	There	are
additional	tools	designed	to	read	and	analyze	log	files.	The	practice	of	logging
can	require	fairly	involved	research.

For	basic	problems,	the	work	of	installing,	configuring,	and	using	a	logging
system	might	tempt	you	back	to	println()	statements.	Fortunately,	there	are
easier	strategies.

The	quick-and-dirty	approach	is	to	define	a	global	function.	This	can	easily	be
disabled	when	you	don’t	need	it:

//	Logging/SimpleLoggingStrategy.kt

package	logging

import	checkinstructions.DataFile

val	logFile	=	//	Reset	ensures	an	empty	file:

		DataFile("simpleLogFile.txt").reset()

fun	debug(msg:	String)	=

		System.err.println("Debug:	$msg")

//	To	disable:

//	fun	debug(msg:	String)	=	Unit

fun	trace(msg:	String)	=

		logFile.appendText("Trace:	$msg\n")

fun	main()	{

		debug("Simple	Logging	Strategy")

		trace("Line	1")

		trace("Line	2")

		println(logFile.readText())

}

/*	Sample	Output:

Debug:	Simple	Logging	Strategy

Trace:	Line	1

Trace:	Line	2

*/

debug()	sends	its	output	to	the	console	error	stream.	trace()	sends	its	output	to
a	log	file.

You	can	also	create	your	own	simple	logging	class:



//	Logging/AtomicLog.kt

package	atomiclog

import	checkinstructions.DataFile

class	Logger(fileName:	String)	{

		val	logFile	=	DataFile(fileName).reset()

		private	fun	log(type:	String,	msg:	String)	=

				logFile.appendText("$type:	$msg\n")

		fun	trace(msg:	String)	=	log("Trace",	msg)

		fun	debug(msg:	String)	=	log("Debug",	msg)

		fun	info(msg:	String)	=	log("Info",	msg)

		fun	warn(msg:	String)	=	log("Warn",	msg)

		fun	error(msg:	String)	=	log("Error",	msg)

		//	For	basic	testing:

		fun	report(msg:	String)	{

				trace(msg)

				debug(msg)

				info(msg)

				warn(msg)

				error(msg)

		}

}

You	can	add	support	for	other	features	like	logging	levels	and	time	stamps.

Using	the	library	is	straightforward:

//	Logging/UseAtomicLog.kt

package	useatomiclog

import	atomiclog.Logger

import	atomictest.eq

private	val	logger	=	Logger("AtomicLog.txt")

fun	main()	{

		logger.report("Hello,	Atomic	Log!")

		logger.logFile.readText()	eq	"""

		Trace:	Hello,	Atomic	Log!

		Debug:	Hello,	Atomic	Log!

		Info:	Hello,	Atomic	Log!

		Warn:	Hello,	Atomic	Log!

		Error:	Hello,	Atomic	Log!

		"""

}

It’s	tempting	to	create	yet	another	logging	library.	This	is	probably	not	a	good
use	of	time.

-

Logging	is	not	as	simple	as	calling	library	functions—there’s	a	significant	run-
time	component.	Logging	is	typically	included	in	the	deliverable	product,	and
operations	people	must	be	able	to	turn	logging	on	and	off,	dynamically	adjust
logging	levels,	and	control	the	logfiles.	For	long-running	programs	such	as



servers,	this	last	issue	is	particularly	important	because	it	includes	strategies	to
prevent	logfiles	from	filling	up.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Unit	Testing

Unit	testing	is	the	practice	of	creating	a	correctness	test	for	each	aspect	of	a
function.	Unit	tests	rapidly	reveal	broken	code,	accelerating	development
speed.

There’s	far	more	to	testing	than	we	can	cover	in	this	book,	so	this	atom	is	only	a
basic	introduction.

The	“Unit”	in	“Unit	testing”	describes	a	small	piece	of	code,	usually	a	function,
that	is	tested	separately	and	independently.	This	should	not	be	confused	with	the
unrelated	Kotlin	Unit	type.

Unit	tests	are	typically	written	by	the	programmer,	and	run	each	time	you	build
the	project.	Because	unit	tests	run	so	frequently,	they	must	run	quickly.

You’ve	been	learning	about	unit	testing	while	reading	this	book,	via	the
AtomicTest	library	we	use	to	validate	the	book’s	code.	AtomicTest	uses	the
concise	eq	for	the	most	common	pattern	in	unit	testing:	comparing	an	expected
result	with	a	generated	result.

Of	the	numerous	unit	test	frameworks,	JUnit	is	the	most	popular	for	Java.	There
are	also	frameworks	created	specifically	for	Kotlin.	The	Kotlin	standard	library
includes	kotlin.test,	which	provides	a	facade	for	different	test	libraries.	This
way	you’re	not	limited	to	using	a	particular	library.	kotlin.test	also	contains
wrappers	for	basic	assertion	functions.

To	use	kotlin.test,	you	must	modify	the	dependencies	section	of	your
project’s	build.gradle	file	to	include:

testImplementation	"org.jetbrains.kotlin:kotlin-test-common"

Inside	a	unit	test,	the	programmer	calls	various	assertion	functions	that	validate
the	expected	behavior	of	the	function	under	test.	Assertion	functions	include
assertEquals(),	which	compares	the	actual	value	against	an	expected	value,
and	assertTrue(),	which	tests	its	first	argument,	a	Boolean	expression.	In	this



example,	the	unit	tests	are	the	functions	with	names	beginning	with	the	word
test:

//	UnitTesting/NoFramework.kt

package	unittesting

import	kotlin.test.assertEquals

import	kotlin.test.assertTrue

import	atomictest.*

fun	fortyTwo()	=	42

fun	testFortyTwo(n:	Int	=	42)	{

		assertEquals(

				expected	=	n,

				actual	=	fortyTwo(),

				message	=	"Incorrect,")

}

fun	allGood(b:	Boolean	=	true)	=	b

fun	testAllGood(b:	Boolean	=	true)	{

		assertTrue(allGood(b),	"Not	good")

}

fun	main()	{

		testFortyTwo()

		testAllGood()

		capture	{

				testFortyTwo(43)

		}	contains

				listOf("expected:",	"<43>",

						"but	was",	"<42>")

		capture	{

				testAllGood(false)

		}	contains	listOf("Error",	"Not	good")

}

In	main(),	you	can	see	that	a	failing	assertion	function	produces	an
AssertionError—this	means	the	unit	test	has	failed,	signaling	the	problem	to
the	programmer.

kotlin.test	contains	an	assortment	of	functions	that	have	names	starting	with
assert:

assertEquals(),	assertNotEquals()
assertTrue(),	assertFalse()
assertNull(),	assertNotNull()
assertFails(),	assertFailsWith()

Similar	functions	are	typically	included	in	every	unit	test	framework,	but	the
names	and	parameter	order	can	be	different.	For	example,	the	message	parameter



in	assertEquals()	might	be	first	or	last.	Also,	it’s	easy	to	mix	up	expected	and
actual—using	named	arguments	avoids	this	problem.

The	expect()	function	in	kotlin.test	runs	a	block	of	code	and	compares	that
result	with	the	expected	value:

fun	<T>	expect(

		expected:	T,

		message:	String?,

		block:	()	->	T

)	{

		assertEquals(expected,	block(),	message)

}

Here’s	testFortyTwo()	rewritten	using	expect():

//	UnitTesting/UsingExpect.kt

package	unittesting

import	atomictest.*

import	kotlin.test.*

fun	testFortyTwo2(n:	Int	=	42)	{

		expect(n,	"Incorrect,")	{	fortyTwo()	}

}

fun	main()	{

		testFortyTwo2()

		capture	{

				testFortyTwo2(43)

		}	contains

				listOf("expected:",

						"<43>	but	was:",	"<42>")

		assertFails	{	testFortyTwo2(43)	}

		capture	{

				assertFails	{	testFortyTwo2()	}

		}	contains

				listOf("Expected	an	exception",

						"to	be	thrown",

						"but	was	completed	successfully.")

		assertFailsWith<AssertionError>	{

				testFortyTwo2(43)

		}

		capture	{

				assertFailsWith<AssertionError>	{

						testFortyTwo2()

				}

		}	contains

				listOf("Expected	an	exception",

						"to	be	thrown",

						"but	was	completed	successfully.")

}

It’s	important	to	add	tests	for	corner	cases.	If	a	function	produces	an	error	under
certain	conditions,	this	should	be	verified	with	a	unit	test	(as	AtomicTest’s
capture()	does).	assertFails()	and	assertFailsWith()	ensure	that	the
exception	is	thrown.	assertFailsWith()	also	checks	the	type	of	the	exception.



Test	Frameworks
A	typical	test	framework	contains	a	collection	of	assertion	functions	and	a
mechanism	to	run	tests	and	display	results.	Most	test	runners	show	results	with
green	for	success	and	red	for	failure.

This	atom	uses	JUnit5	as	the	underlying	library	for	kotlin.test.	To	include	it	in
a	project,	the	dependencies	section	of	your	build.gradle	should	look	like	this:

testImplementation	"org.jetbrains.kotlin:kotlin-test"

testImplementation	"org.jetbrains.kotlin:kotlin-test-junit"

testImplementation	"org.jetbrains.kotlin:kotlin-test-junit5"

testImplementation	"org.junit.jupiter:junit-jupiter:$junit_version"

If	you’re	using	a	different	library,	you	can	find	setup	details	in	that	framework’s
instructions.

kotlin.test	provides	facades	for	the	most	commonly	used	functions.
Assertions	are	delegated	to	the	appropriate	functions	in	the	underlying	test
framework.	In	the	org.junit.jupiter.api.Assertions	class,	for	example,
assertEquals()	calls	Assertions.assertEquals().

Kotlin	supports	annotations	for	definitions	and	expressions.	An	annotation	is	the
@	sign	followed	by	the	annotation	name,	and	indicates	special	treatment	for	the
annotated	element.	The	@Test	annotation	converts	a	regular	function	into	a	test
function.	We	can	test	fortyTwo()	and	allGood()	using	the	@Test	annotation:

//	Tests/unittesting/SampleTest.kt

package	unittesting

import	kotlin.test.*

class	SampleTest	{

		@Test

		fun	testFortyTwo()	{

				expect(42,	"Incorrect,")	{	fortyTwo()	}

		}

		@Test

		fun	testAllGood()	{

				assertTrue(allGood(),	"Not	good")

		}

}

kotlin.test	uses	a	typealias	to	create	a	facade	for	the	@Test	annotation:

typealias	Test	=	org.junit.jupiter.api.Test



This	tells	the	compiler	to	substitute	the	@org.junit.jupiter.api.Test
annotation	for	@Test.

A	test	class	usually	contains	multiple	unit	tests.	Ideally,	each	unit	test	only
verifies	a	single	behavior.	This	quickly	guides	you	to	the	problem	if	a	test	fails
when	introducing	new	functionality.

@Test	functions	can	be	run:

Independently
As	part	of	a	class
Together	with	all	tests	defined	for	the	application

IntelliJ	IDEA	allows	you	to	rerun	only	the	failed	tests.

Consider	a	simple	state	machine	with	three	states:	On,	Off	and	Paused.	The
functions	start(),	pause(),	resume()	and	finish()	control	the	state	machine.
resume()	is	valuable	because	resuming	a	paused	machine	is	significantly
cheaper	and/or	faster	than	starting	a	machine.

//	UnitTesting/StateMachine.kt

package	unittesting

import	unittesting.State.*

enum	class	State	{	On,	Off,	Paused	}

class	StateMachine	{

		var	state:	State	=	Off

				private	set

		private	fun	transition(

				new:	State,	current:	State	=	On

		)	{

				if(new	==	Off	&&	state	!=	Off)

						state	=	Off

				else	if(state	==	current)

						state	=	new

		}

		fun	start()	=	transition(On,	Off)

		fun	pause()	=	transition(Paused,	On)

		fun	resume()	=	transition(On,	Paused)

		fun	finish()	=	transition(Off)

}

These	operations	are	ignored:

resume()	or	finish()	on	a	machine	that	is	Off.
pause()	or	start()	on	a	Paused	machine.



To	test	StateMachine,	we	create	a	property	sm	inside	the	test	class.	The	test
runner	creates	a	fresh	StateMachineTest	object	for	each	different	test:

//	Tests/unittesting/StateMachineTest.kt

package	unittesting

import	kotlin.test.*

class	StateMachineTest	{

		val	sm	=	StateMachine()

		@Test

		fun	start()	{

				sm.start()

				assertEquals(State.On,	sm.state)

		}

		@Test

		fun	`pause	and	resume`()	{

				sm.start()

				sm.pause()

				assertEquals(State.Paused,	sm.state)

				sm.resume()

				assertEquals(State.On,	sm.state)

				sm.pause()

				assertEquals(State.Paused,	sm.state)

		}

		//	...

}

Normally,	Kotlin	only	allows	letters	and	digits	for	function	names.	However,	if
you	put	a	function	name	inside	backticks,	you	can	use	any	characters	(including
whitespaces).	This	means	you	can	create	function	names	that	are	sentences
describing	their	tests,	such	as	pause	and	resume.	This	produces	more	useful
error	information.

An	essential	goal	of	unit	testing	is	to	simplify	the	gradual	development	of
complicated	software.	After	introducing	each	new	piece	of	functionality,	a
developer	not	only	adds	new	tests	to	check	its	correctness	but	also	runs	all	the
existing	tests	to	make	sure	that	the	prior	functionality	still	works.	You	feel	safer
when	introducing	new	changes,	and	the	system	is	more	predictable	and	stable.

In	the	process	of	fixing	a	new	bug,	you	create	additional	unit	tests	for	this	and
similar	cases,	so	you	don’t	make	the	same	mistakes	in	the	future.

If	you	use	a	continuous	integration	(CI)	server	such	as	Teamcity,	all	available
tests	run	automatically	and	you’re	notified	if	something	breaks.

Consider	a	class	with	several	properties:

//	UnitTesting/Learner.kt

package	unittesting

https://www.jetbrains.com/teamcity/


enum	class	Language	{

		Kotlin,	Java,	Go,	Python,	Rust,	Scala

}

data	class	Learner(

		val	id:	Int,

		val	name:	String,

		val	surname:	String,

		val	language:	Language

)

It’s	often	helpful	to	add	utility	functions	for	manufacturing	test	data,	especially
when	you	must	create	many	objects	with	the	same	default	values	during	testing.
Here,	makeLearner()	creates	objects	with	default	values:

//	Tests/unittesting/LearnerTest.kt

package	unittesting

import	unittesting.Language.*

import	kotlin.test.*

fun	makeLearner(

		id:	Int,

		language:	Language	=	Kotlin,									//	[1]

		name:	String	=	"Test	Name	$id",

		surname:	String	=	"Test	Surname	$id"

)	=	Learner(id,	name,	surname,	language)

class	LearnerTest	{

		@Test

		fun	`single	Learner`()	{

				val	learner	=	makeLearner(10,	Java)

				assertEquals("Test	Name	10",	learner.name)

		}

		@Test

		fun	`multiple	Learners`()	{

				val	learners	=	(1..9).map(::makeLearner)

				assertTrue(

						learners.all	{	it.language	==	Kotlin	})

		}

}

Adding	default	arguments	to	Learner	that	are	only	for	testing	introduces
unnecessary	complexity	and	potential	confusion.	makeLearner()	is	easier	and
cleaner	when	producing	test	instances,	and	it	eliminates	redundant	code.

The	order	of	makeLearner()’s	parameters	simplifies	its	usage.	In	this	case,	we
expect	to	specify	a	non-default	lang	more	often	than	changing	default	test	values
for	name	and	surname,	so	the	lang	parameter	is	second	([1]).

Mocking	and	Integration	Tests
A	system	that	depends	on	other	components	complicates	the	creation	of	isolated
tests.	Rather	than	introducing	dependencies	on	real	components,	programmers



often	use	a	practice	called	mocking.

A	mock	replaces	a	real	entity	with	a	fake	one	during	testing.	Databases	are
commonly	mocked	to	preserve	the	integrity	of	the	stored	data.	The	mock	can
implement	the	same	interface	as	the	real	one,	or	it	can	be	created	using	mocking
libraries	such	as	MockK.

It’s	vital	to	test	separate	pieces	of	functionality	independently—that’s	what	unit
tests	do.	It’s	also	essential	to	ensure	that	different	parts	of	the	system	work	when
combined	with	each	other—that’s	what	integration	tests	do.	Unit	tests	are
“inward-directed”	while	integration	tests	are	“outward-directed”.

Testing	Inside	IntelliJ	IDEA
IntelliJ	IDEA	and	Android	Studio	support	creating	and	running	unit	tests.

To	create	a	test,	right-click	(control-click	on	a	Mac)	the	class	or	function	you
want	to	test	and	select	“Generate…”	from	the	pop-up	menu.	From	the
“Generate”	menu,	choose	“Test…”.	A	second	approach	is	to	open	the	list	of
“intention	actions”,	and	select	“Create	Test”.

Select	JUnit5	as	the	“Testing	library”.	If	a	message	appears	saying	“JUnit5
library	not	found	in	the	module,”	push	the	“Fix”	button	next	to	the	message.	The
“Destination	package”	should	be	unittesting.	The	result	will	end	up	in	another
directory	(always	separate	tests	from	main	code).	The	Gradle	default	is	the
src/test/kotlin	folder,	but	you	can	choose	a	different	destination.

Check	the	boxes	next	to	the	functions	you	want	tested.	You	can	automatically
navigate	from	the	source	code	to	the	corresponding	test	class	and	back;	for
details	see	the	documentation.

Once	the	test	framework	code	is	generated,	you	can	modify	it	to	suit	your	needs.
For	the	examples	and	exercises	in	this	atom,	replace:

import	org.junit.Test

import	org.junit.Assert.*

with:

import	kotlin.test.*

https://github.com/mockk/mockk
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/create-tests.html
https://www.jetbrains.com/help/idea/create-tests.html#test-code-navigation


When	running	tests	within	IntelliJ	IDEA,	you	may	get	an	error	message	like
“test	events	were	not	received.”	This	is	because	IDEA’s	default	configuration
assumes	you	are	running	your	tests	externally,	using	Gradle.	To	fix	it	so	you	can
run	your	tests	inside	IDEA,	start	at	the	file	menu:

File	|	Settings	|	Build,	Execution,	Deployment	|	Build	Tools	|	Gradle

On	that	page	you’ll	see	a	drop-down	titled	“Run	tests	using:”	which	is	set	to
“Gradle	(Default)”.	Change	this	to	“IntelliJ	IDEA”	and	your	tests	will	run
correctly.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



SECTION	VII:	POWER	TOOLS
Any	fool	can	write	code	that	a	computer	can	understand.	Good
programmers	write	code	that	humans	can	understand.—Martin	Fowler



Extension	Lambdas

An	extension	lambda	is	like	an	extension	function.	It	defines	a	lambda
instead	of	a	function.

Here,	va	and	vb	yield	the	same	result:

//	ExtensionLambdas/Vanbo.kt

package	extensionlambdas

import	atomictest.eq

val	va:	(String,	Int)	->	String	=	{	str,	n	->

		str.repeat(n)	+	str.repeat(n)

}

val	vb:	String.(Int)	->	String	=	{

		this.repeat(it)	+	repeat(it)

}

fun	main()	{

		va("Vanbo",	2)	eq	"VanboVanboVanboVanbo"

		"Vanbo".vb(2)	eq	"VanboVanboVanboVanbo"

		vb("Vanbo",	2)	eq	"VanboVanboVanboVanbo"

		//	"Vanbo".va(2)	//	Doesn't	compile

}

va	is	an	ordinary	lambda	like	the	ones	you’ve	seen	throughout	this	book.	It	takes
two	parameters,	a	String	and	an	Int,	and	returns	a	String.	The	lambda	body
also	has	two	parameters,	followed	by	the	requisite	arrow:	str,	n	->.

vb	moves	the	String	parameter	outside	the	parentheses	and	uses	extension
function	syntax:	String.(Int).	Just	like	an	extension	function,	the	object	of	the
type	being	extended	(String,	in	this	case),	becomes	the	receiver,	and	can	be
accessed	using	this.

The	first	call	in	vb	uses	the	explicit	form	this.repeat(it).	The	second	call
omits	the	this	to	produce	repeat(it).	Like	any	lambda,	if	you	have	only	one
parameter	(Int,	in	this	case),	it	refers	to	that	parameter.

In	main(),	the	call	to	va()	is	just	what	you’d	expect	from	the	lambda	type
declaration	(String,	Int)	->	String—two	arguments	in	a	traditional	function
call.	vb()	is	an	extension	so	it	can	be	called	using	the	extension	form



"Vanbo".vb(2).	vb()	can	also	be	called	using	the	traditional	form	vb("Vanbo",
2).	va()	cannot	be	called	using	the	extension	form.

When	you	first	see	an	extension	lambda,	it	can	seem	like	the	String.(Int)	part
is	what	you	should	focus	on.	But	String	is	not	being	extended	by	the	parameter
list	(Int)—it	is	being	extended	by	the	entire	lambda:	String.(Int)	->	String

The	Kotlin	documentation	usually	refers	to	extension	lambdas	as	function
literals	with	receiver.	The	term	function	literal	encompasses	both	lambdas	and
anonymous	functions.	The	term	lambda	with	receiver	is	often	used
synonymously	for	extension	lambda,	to	emphasize	that	it’s	a	lambda	with	the
receiver	as	an	additional	implicit	parameter.

Like	an	extension	function,	an	extension	lambda	can	have	multiple	parameters:

//	ExtensionLambdas/Parameters.kt

package	extensionlambdas

import	atomictest.eq

val	zero:	Int.()	->	Boolean	=	{

		this	==	0

}

val	one:	Int.(Int)	->	Boolean	=	{

		this	%	it	==	0

}

val	two:	Int.(Int,	Int)	->	Boolean	=	{

		arg1,	arg2	->

				this	%	(arg1	+	arg2)	==	0

}

val	three:	Int.(Int,	Int,	Int)	->	Boolean	=	{

		arg1,	arg2,	arg3	->

				this	%	(arg1	+	arg2	+	arg3)	==	0

}

fun	main()	{

		0.zero()	eq	true

		10.one(10)	eq	true

		20.two(10,	10)	eq	true

		30.three(10,	10,	10)	eq	true

}

In	one(),	it	is	used	instead	of	naming	the	parameter.	If	this	produces	unclear
syntax,	it’s	better	to	use	explicit	parameter	names.

We’ve	been	demonstrating	extension	lambdas	by	defining	vals,	but	they	more
commonly	appear	as	function	parameters,	as	in	f2():



//	ExtensionLambdas/FunctionParameters.kt

package	extensionlambdas

class	A	{

		fun	af()	=	1

}

class	B	{

		fun	bf()	=	2

}

fun	f1(lambda:	(A,	B)	->	Int)	=

		lambda(A(),	B())

fun	f2(lambda:	A.(B)	->	Int)	=

		A().lambda(B())

fun	lambdas()	{

		f1	{	aa,	bb	->	aa.af()	+	bb.bf()	}

		f2	{	af()	+	it.bf()	}

}

In	main(),	notice	the	more	succinct	syntax	in	the	lambda	provided	to	f2().

If	your	extension	lambda	returns	Unit,	the	result	produced	by	the	lambda	body	is
ignored:

//	ExtensionLambdas/LambdaUnitReturn.kt

package	extensionlambdas

fun	unitReturn(lambda:	A.()	->	Unit)	=

		A().lambda()

fun	nonUnitReturn(lambda:	A.()	->	String)	=

		A().lambda()

fun	lambdaUnitReturn	()	{

		unitReturn	{

				"Unit	ignores	the	return	value"	+

				"So	it	can	be	anything	..."

		}

		unitReturn	{	1	}	//	...	of	any	type	...

		unitReturn	{	}			//	...	or	nothing

		nonUnitReturn	{

				"Must	return	the	proper	type"

		}

		//	nonUnitReturn	{	}	//	Not	an	option

}

You	can	pass	an	extension	lambda	to	a	function	that	expects	an	ordinary	lambda,
as	long	as	the	parameter	lists	conform	to	each	other:

//	ExtensionLambdas/Transform.kt

package	extensionlambdas

import	atomictest.eq

fun	String.transform1(

		n:	Int,	lambda:	(String,	Int)	->	String



)	=	lambda(this,	n)

fun	String.transform2(

		n:	Int,	lambda:	String.(Int)	->	String

)	=	lambda(this,	n)

val	duplicate:	String.(Int)	->	String	=	{

		repeat(it)

}

val	alternate:	String.(Int)	->	String	=	{

		toCharArray()

				.filterIndexed	{	i,	_	->	i	%	it	==	0	}

				.joinToString("")

}

fun	main()	{

		"hello".transform1(5,	duplicate)

				.transform2(3,	alternate)	eq	"hleolhleo"

		"hello".transform2(5,	duplicate)

				.transform1(3,	alternate)	eq	"hleolhleo"

}

transform1()	expects	an	ordinary	lambda	while	transform2()	expects	an
extension	lambda.	In	main(),	the	extension	lambdas	duplicate	and	alternate
are	passed	to	both	transform1()	and	transform2().	The	this	receiver	inside
the	extension	lambdas	duplicate	and	alternate	becomes	the	first	String
argument	when	either	lambda	is	passed	to	transform1().

Using	::	we	can	pass	a	function	reference	when	an	extension	lambda	is
expected:

//	ExtensionLambdas/FuncReferences.kt

package	extensionlambdas

import	atomictest.eq

fun	Int.d1(f:	(Int)	->	Int)	=	f(this)	*	10

fun	Int.d2(f:	Int.()	->	Int)	=	f()	*	10

fun	f1(n:	Int)	=	n	+	3

fun	Int.f2()	=	this	+	3

fun	main()	{

		74.d1(::f1)	eq	770

		74.d2(::f1)	eq	770

		74.d1(Int::f2)	eq	770

		74.d2(Int::f2)	eq	770

}

A	reference	to	an	extension	function	has	the	same	type	as	an	extension	lambda:
Int::f2	has	the	type	Int.()	->	Int.



In	the	call	74.d1(Int::f2)	we	pass	an	extension	function	to	d1()	which	does
not	declare	an	extension	lambda	parameter.

Polymorphism	works	with	both	ordinary	extension	functions	(Base.g())	and
extension	lambdas	(the	Base.h()	parameter):

//	ExtensionLambdas/ExtensionPolymorphism.kt

package	extensionlambdas

import	atomictest.eq

open	class	Base	{

		open	fun	f()	=	1

}

class	Derived	:	Base()	{

		override	fun	f()	=	99

}

fun	Base.g()	=	f()

fun	Base.h(xl:	Base.()	->	Int)	=	xl()

fun	main()	{

		val	b:	Base	=	Derived()	//	Upcast

		b.g()	eq	99

		b.h	{	f()	}	eq	99

}

You	wouldn’t	expect	it	not	to	work,	but	it’s	always	worth	testing	an	assumption
by	creating	an	example.

You	can	use	anonymous	function	syntax	(described	in	Local	Functions)	instead
of	extension	lambdas.	Here	we	use	an	anonymous	extension	function:

//	ExtensionLambdas/AnonymousFunction.kt

package	extensionlambdas

import	atomictest.eq

fun	exec(

		arg1:	Int,	arg2:	Int,

		f:	Int.(Int)	->	Boolean

)	=	arg1.f(arg2)

fun	main()	{

		exec(10,	2,	fun	Int.(d:	Int):	Boolean	{

				return	this	%	d	==	0

		})	eq	true

}

In	main(),	the	call	to	exec()	shows	that	the	anonymous	extension	function	is
accepted	as	an	extension	lambda.



The	Kotlin	standard	library	contains	a	number	of	functions	that	work	with
extension	lambdas.	For	example,	a	StringBuilder	is	a	modifiable	object	that
produces	an	immutable	String	when	you	call	toString().	In	contrast,	the	more
modern	buildString()	accepts	an	extension	lambda.	It	creates	its	own
StringBuilder	object,	applies	the	extension	lambda	to	that	object,	then	calls
toString()	to	produce	the	result:

//	ExtensionLambdas/StringCreation.kt

package	extensionlambdas

import	atomictest.eq

private	fun	messy():	String	{

		val	built	=	StringBuilder()						//	[1]

		built.append("ABCs:	")

		('a'..'x').forEach	{	built.append(it)	}

		return	built.toString()										//	[2]

}

private	fun	clean()	=	buildString	{

		append("ABCs:	")

		('a'..'x').forEach	{	append(it)	}

}

private	fun	cleaner()	=

		('a'..'x').joinToString("",	"ABCs:	")

fun	main()	{

		messy()	eq	"ABCs:	abcdefghijklmnopqrstuvwx"

		messy()	eq	clean()

		clean()	eq	cleaner()

}

In	messy()	we	repeat	the	name	built	multiple	times.	We	must	also	create	a
StringBuilder	([1])	and	produce	the	result	([2]).	Using	buildString()	in
clean(),	you	don’t	need	to	create	and	manage	the	receiver	for	the	append()
calls,	which	makes	everything	much	more	succinct.

cleaner()	shows	that,	if	you	look,	you	can	sometimes	find	a	more	direct
solution	that	skips	the	builder	altogether.

There	are	standard	library	functions	similar	to	buildString()	that	use	extension
lambdas	to	produce	initialized,	read-only	Lists	and	Maps:

//	ExtensionLambdas/ListsAndMaps.kt

@file:OptIn(ExperimentalStdlibApi::class)

package	extensionlambdas

import	atomictest.eq

val	characters:	List<String>	=	buildList	{

		add("Chars:")

		('a'..'d').forEach	{	add("$it")	}

}



val	charmap:	Map<Char,	Int>	=	buildMap	{

		('A'..'F').forEachIndexed	{	n,	ch	->

				put(ch,	n)

		}

}

fun	main()	{

		characters	eq	"[Chars:,	a,	b,	c,	d]"

		//		characters	eq	characters2

		charmap	eq	"{A=0,	B=1,	C=2,	D=3,	E=4,	F=5}"

}

Inside	the	extension	lambdas,	the	List	and	Map	are	mutable,	but	the	results	of
buildList	and	buildMap	are	read-only	Lists	and	Maps.

Writing	Builders	Using	Extension	Lambdas
Hypothetically,	you	can	create	constructors	to	produce	all	necessary	object
configurations.	Sometimes	the	number	of	possibilities	makes	this	messy	and
impractical.	The	Builder	pattern	has	several	benefits:

1.	 It	creates	objects	in	a	multi-step	process.	This	can	sometimes	be	helpful
when	object	construction	is	complex.

2.	 It	produces	different	object	variations	using	the	same	basic	construction
code.

3.	 It	separates	common	construction	code	from	specialized	code,	making	it
easier	to	write	and	read	the	code	for	individual	object	variations.

Implementing	builders	using	extension	lambdas	provides	an	additional	benefit,
which	is	the	creation	of	a	Domain-Specific	Language	(DSL).	The	goal	of	a	DSL
is	syntax	that	is	comfortable	and	sensible	to	a	user	who	is	a	domain	expert	rather
than	a	programming	expert.	This	allows	that	user	to	produce	working	solutions
knowing	only	a	small	subset	of	the	surrounding	language—while	at	the	same
time	benefiting	from	the	structure	and	safety	of	that	language.

For	example,	consider	a	system	that	captures	actions	and	ingredients	for
preparing	different	kinds	of	sandwiches.	We	can	use	classes	to	model	the	pieces
of	a	Recipe:

//	ExtensionLambdas/Sandwich.kt

package	sandwich

import	atomictest.eq

open	class	Recipe	:	ArrayList<RecipeUnit>()

open	class	RecipeUnit	{



		override	fun	toString()	=

				"${this::class.simpleName}"

}

open	class	Operation	:	RecipeUnit()

class	Toast	:	Operation()

class	Grill	:	Operation()

class	Cut	:	Operation()

open	class	Ingredient	:	RecipeUnit()

class	Bread	:	Ingredient()

class	PeanutButter	:	Ingredient()

class	GrapeJelly	:	Ingredient()

class	Ham	:	Ingredient()

class	Swiss	:	Ingredient()

class	Mustard	:	Ingredient()

open	class	Sandwich	:	Recipe()	{

		fun	action(op:	Operation):	Sandwich	{

				add(op)

				return	this

		}

		fun	grill()	=	action(Grill())

		fun	toast()	=	action(Toast())

		fun	cut()	=	action(Cut())

}

fun	sandwich(

		fillings:	Sandwich.()	->	Unit

):	Sandwich	{

		val	sandwich	=	Sandwich()

		sandwich.add(Bread())

		sandwich.toast()

		sandwich.fillings()

		sandwich.cut()

		return	sandwich

}

fun	main()	{

		val	pbj	=	sandwich	{

				add(PeanutButter())

				add(GrapeJelly())

		}

		val	hamAndSwiss	=	sandwich	{

				add(Ham())

				add(Swiss())

				add(Mustard())

				grill()

		}

		pbj	eq	"[Bread,	Toast,	PeanutButter,	"	+

				"GrapeJelly,	Cut]"

		hamAndSwiss	eq	"[Bread,	Toast,	Ham,	"	+

				"Swiss,	Mustard,	Grill,	Cut]"

}

sandwich()	captures	the	basic	ingredients	and	operations	to	produce	any
Sandwich	(here,	we	assume	all	sandwiches	are	toasted,	but	in	the	exercises	you’ll
see	how	to	make	that	optional).	The	fillings	extension	lambda	allows	the
caller	to	configure	the	Sandwich	in	numerous	different	ways,	but	without
requiring	a	constructor	for	each	configuration.



The	syntax	seen	in	main()	shows	how	this	system	might	be	used	as	a	DSL—the
user	only	needs	to	understand	the	syntax	of	creating	a	Sandwich	by	calling
sandwich()	and	providing	the	ingredients	and	operations	inside	the	curly	braces.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Scope	Functions

Scope	functions	create	a	temporary	scope	wherein	you	can	access	an	object
without	using	its	name.

Scope	functions	exist	only	to	make	your	code	more	concise	and	readable.	They
do	not	provide	additional	abilities.

There	are	five	scope	functions:	let(),	run(),	with(),	apply(),	and	also().
They	are	designed	to	work	with	a	lambda	and	do	not	require	an	import.	They
differ	in	the	way	you	access	the	context	object,	using	either	it	or	this,	and	in
what	they	return.	with()	uses	a	different	calling	syntax	than	the	others.	Here	you
can	see	the	differences:

//	ScopeFunctions/Differences.kt

package	scopefunctions

import	atomictest.eq

data	class	Tag(var	n:	Int	=	0)	{

		var	s:	String	=	""

		fun	increment()	=	++n

}

fun	main()	{

		//	let():	Access	object	with	'it'

		//	Returns	last	expression	in	lambda

		Tag(1).let	{

				it.s	=	"let:	${it.n}"

				it.increment()

		}	eq	2

		//	let()	with	named	lambda	argument:

		Tag(2).let	{	tag	->

				tag.s	=	"let:	${tag.n}"

				tag.increment()

		}	eq	3

		//	run():	Access	object	with	'this'

		//	Returns	last	expression	in	lambda

		Tag(3).run	{

				s	=	"run:	$n"	//	Implicit	'this'

				increment()			//	Implicit	'this'

		}	eq	4

		//	with():	Access	object	with	'this'

		//	Returns	last	expression	in	lambda

		with(Tag(4))	{

				s	=	"with:	$n"

				increment()



		}	eq	5

		//	apply():	Access	object	with	'this'

		//	Returns	modified	object

		Tag(5).apply	{

				s	=	"apply:	$n"

				increment()

		}	eq	"Tag(n=6)"

		//	also():	Access	object	with	'it'

		//	Returns	modified	object

		Tag(6).also	{

				it.s	=	"also:	${it.n}"

				it.increment()

		}	eq	"Tag(n=7)"

		//	also()	with	named	lambda	argument:

		Tag(7).also	{	tag	->

				tag.s	=	"also:	${tag.n}"

				tag.increment()

		}	eq	"Tag(n=8)"

}

There	are	multiple	scope	functions	because	they	satisfy	different	combinations
of	needs:

Scope	functions	that	access	the	context	object	using	this	(run(),	with()
and	apply())	produce	the	cleanest	syntax	within	their	scope	block.
Scope	functions	that	access	the	context	object	using	it	(let()	and	also())
allow	you	to	provide	a	named	lambda	argument.
Scope	functions	that	produce	the	last	expression	in	their	lambda	(let(),
run()	and	with())	are	for	creating	results.
Scope	functions	that	return	the	modified	context	object	(apply()	and
also())	are	for	chaining	expressions	together.

run()	is	a	regular	function	and	with()	is	an	extension	function;	otherwise	they
are	identical.	Prefer	run()	for	call	chains	and	when	the	receiver	is	nullable.

Here’s	a	summary	of	scope	function	characteristics:

	 this	Context it	Context
Produces	last	expression with,	run let

Produces	receiver apply also

You	can	apply	a	scope	function	to	a	nullable	receiver	using	the	safe	access
operator	?.,	which	only	calls	the	scope	function	if	the	receiver	is	not	null:

//	ScopeFunctions/AndNullability.kt

package	scopefunctions



import	atomictest.eq

import	kotlin.random.Random

fun	gets():	String?	=

		if	(Random.nextBoolean())	"str!"	else	null

fun	main()	{

		gets()?.let	{

				it.removeSuffix("!")	+	it.length

		}?.eq("str4")

}

In	main(),	if	gets()	produces	a	non-null	result	then	let	is	invoked.	The	non-
nullable	receiver	of	let	becomes	the	non-nullable	it	inside	the	lambda.

Applying	the	safe	access	operator	to	the	context	object	null-checks	the	entire
scope,	as	seen	in	[1]-[4]	in	the	following.	Otherwise,	each	call	within	the	scope
must	be	individually	null-checked:

//	ScopeFunctions/Gnome.kt

package	scopefunctions

class	Gnome(val	name:	String)	{

		fun	who()	=	"Gnome:	$name"

}

fun	whatGnome(gnome:	Gnome?)	{

		gnome?.let	{	it.who()	}					//	[1]

		gnome.let	{	it?.who()	}

		gnome?.run	{	who()	}								//	[2]

		gnome.run	{	this?.who()	}

		gnome?.apply	{	who()	}						//	[3]

		gnome.apply	{	this?.who()	}

		gnome?.also	{	it.who()	}				//	[4]

		gnome.also	{	it?.who()	}

		//	No	help	for	nullability:

		with(gnome)	{	this?.who()	}

}

When	you	use	the	safe	access	operator	on	let(),	run(),	apply()	or	also(),	the
entire	scope	is	ignored	for	a	null	context	object:

//	ScopeFunctions/NullGnome.kt

package	scopefunctions

import	atomictest.*

fun	whichGnome(gnome:	Gnome?)	{

		trace(gnome?.name)

		gnome?.let	{	trace(it.who())	}

		gnome?.run	{	trace(who())	}

		gnome?.apply	{	trace(who())	}

		gnome?.also	{	trace(it.who())	}

}

fun	main()	{

		whichGnome(Gnome("Bob"))

		whichGnome(null)



		trace	eq	"""

				Bob

				Gnome:	Bob

				Gnome:	Bob

				Gnome:	Bob

				Gnome:	Bob

				null

		"""

}

The	trace	shows	that	when	whichGnome()	receives	a	null	argument,	no	scope
functions	execute.

Attempting	to	retrieve	an	object	from	a	Map	has	a	nullable	result	because	there’s
no	guarantee	it	will	find	an	entry	for	that	key.	Here	we	show	the	different	scope
functions	applied	to	the	result	of	a	Map	lookup:

//	ScopeFunctions/MapLookup.kt

package	scopefunctions

import	atomictest.*

data	class	Plumbus(var	id:	Int)

fun	display(map:	Map<String,	Plumbus>)	{

		trace("displaying	$map")

		val	pb1:	Plumbus	=	map["main"]?.let	{

				it.id	+=	10

				it

		}	?:	return

		trace(pb1)

		val	pb2:	Plumbus?	=	map["main"]?.run	{

				id	+=	9

				this

		}

		trace(pb2)

		val	pb3:	Plumbus?	=	map["main"]?.apply	{

				id	+=	8

		}

		trace(pb3)

		val	pb4:	Plumbus?	=	map["main"]?.also	{

				it.id	+=	7

		}

		trace(pb4)

}

fun	main()	{

		display(mapOf("main"	to	Plumbus(1)))

		display(mapOf("none"	to	Plumbus(2)))

		trace	eq	"""

				displaying	{main=Plumbus(id=1)}

				Plumbus(id=11)

				Plumbus(id=20)

				Plumbus(id=28)

				Plumbus(id=35)

				displaying	{none=Plumbus(id=2)}



		"""

}

Although	with()	can	be	forced	into	this	example,	the	results	are	too	ugly	to
consider.

In	the	trace	you	see	that	each	Plumbus	object	is	created	during	the	first	call	to
display()	in	main(),	but	none	are	created	during	the	second	call.	Look	at	the
definition	of	pb1	and	recall	the	Elvis	operator.	If	the	expression	to	the	left	of	?:
is	not	null,	it	becomes	the	result	and	is	assigned	to	pb1.	But	if	that	expression	is
null,	the	right	side	of	?:	becomes	the	result,	which	is	return	so	display()
returns	before	completing	the	initialization	of	pb1,	and	thus	none	of	the	values
pb1-pb4	are	created.

Scope	functions	work	with	nullable	types	in	chained	calls:

//	ScopeFunctions/NameTag.kt

package	scopefunctions

import	atomictest.trace

val	functions	=	listOf(

		fun(name:	String?)	{

				name

						?.takeUnless	{	it.isBlank()	}

						?.let	{	trace("$it	in	let")	}

		},

		fun(name:	String?)	{

				name

						?.takeUnless	{	it.isBlank()	}

						?.run	{	trace("$this	in	run")	}

		},

		fun(name:	String?)	{

				name

						?.takeUnless	{	it.isBlank()	}

						?.apply	{	trace("$this	in	apply")	}

		},

		fun(name:	String?)	{

				name

						?.takeUnless	{	it.isBlank()	}

						?.also	{	trace("$it	in	also")	}

		},

)

fun	main()	{

		functions.forEach	{	it(null)	}

		functions.forEach	{	it("		")	}

		functions.forEach	{	it("Yumyulack")	}

		trace	eq	"""

				Yumyulack	in	let

				Yumyulack	in	run

				Yumyulack	in	apply

				Yumyulack	in	also

		"""

}



functions	is	a	List	of	function	references	that	are	applied	by	the	forEach	calls
in	main(),	using	it	together	with	function-call	syntax.	Each	function	in
functions	uses	a	different	scope	function.	The	forEach	calls	to	it(null)	and
it("	")	are	effectively	ignored,	so	we	only	display	non-null,	non-blank	input.

When	nesting	scope	functions,	multiple	this	or	it	objects	can	be	available	in	a
given	context.	Sometimes	it’s	difficult	to	know	which	object	is	selected:

//	ScopeFunctions/Nesting.kt

package	scopefunctions

import	atomictest.eq

fun	nesting(s:	String,	i:	Int):	String	=

		with(s)	{

				with(i)	{

						toString()

				}

		}	+

		s.let	{

				i.let	{

						it.toString()

				}

		}	+

		s.run	{

				i.run	{

						toString()

				}

		}	+

		s.apply	{

				i.apply	{

						toString()

				}

		}	+

		s.also	{

				i.also	{

						it.toString()

				}

		}

fun	main()	{

		nesting("X",	7)	eq	"777XX"

}

In	all	cases,	the	call	to	toString()	is	applied	to	Int	because	the	“closest”	this
or	it	is	the	Int	implicit	receiver.	apply()	and	also()	return	the	modified	object
s	instead	of	the	result	of	the	calculation.	As	scope	functions	are	intended	to
improve	readability,	nesting	scope	functions	is	a	questionable	practice.

None	of	the	scope	functions	provide	resource	cleanup	the	way	that	use()	does:

//	ScopeFunctions/Blob.kt

package	scopefunctions

import	atomictest.*



data	class	Blob(val	id:	Int)	:	AutoCloseable	{

		override	fun	toString()	=	"Blob($id)"

		fun	show()	{	trace("$this")}

		override	fun	close()	=	trace("Close	$this")

}

fun	main()	{

		Blob(1).let	{	it.show()	}

		Blob(2).run	{	show()	}

		with(Blob(3))	{	show()	}

		Blob(4).apply	{	show()	}

		Blob(5).also	{	it.show()	}

		Blob(6).use	{	it.show()	}

		Blob(7).use	{	it.run	{	show()	}	}

		Blob(8).apply	{	show()	}.also	{	it.close()	}

		Blob(9).also	{	it.show()	}.apply	{	close()	}

		Blob(10).apply	{	show()	}.use	{		}

		trace	eq	"""

				Blob(1)

				Blob(2)

				Blob(3)

				Blob(4)

				Blob(5)

				Blob(6)

				Close	Blob(6)

				Blob(7)

				Close	Blob(7)

				Blob(8)

				Close	Blob(8)

				Blob(9)

				Close	Blob(9)

				Blob(10)

				Close	Blob(10)

		"""

}

Although	use()	looks	similar	to	let()	and	also(),	use()	does	not	allow
anything	to	be	returned	from	its	lambda.	This	prevents	expression	chaining	or
producing	results.

Without	use(),	close()	is	not	called	for	any	of	the	scope	functions.	To	use	a
scope	function	and	guarantee	cleanup,	place	the	scope	function	inside	the	use()
lambda	as	in	Blob(7).	Blob(8)	and	Blob(9)	show	how	to	explicitly	call
close(),	and	how	to	use	apply()	and	also()	interchangeably.

Blob(10)	uses	apply()	and	the	result	is	passed	into	use(),	which	calls	close()
at	the	end	of	its	lambda.

Scope	Functions	are	Inlined
Normally,	passing	a	lambda	as	an	argument	stores	the	lambda	code	in	an
auxiliary	object,	adding	a	small	bit	of	runtime	overhead	compared	to	a	regular
function	call.	This	overhead	is	usually	not	a	concern,	considering	the	benefits	of



lambdas	(readability	and	code	structure).	In	addition,	the	JVM	contains
numerous	optimizations	that	often	compensate	for	the	overhead.

Any	performance	cost,	no	matter	how	small,	produces	recommendations	to	“use
a	feature	with	care.”	All	runtime	overhead	is	eliminated	by	defining	the	scope
functions	as	inline.	This	way,	scope	functions	can	be	used	without	hesitation.

When	the	compiler	sees	an	inline	function	call,	it	substitutes	the	function	body
for	the	function	call,	replacing	all	parameters	with	actual	arguments.

Inlining	works	well	for	small	functions,	where	function-call	overhead	can	be	a
significant	portion	of	the	entire	call.	As	functions	get	larger,	the	cost	of	the	call
shrinks	in	comparison	to	the	time	required	by	the	entire	call,	diminishing	the
value	of	inlining.	At	the	same	time,	the	resulting	bytecode	increases	because	the
entire	function	body	is	inserted	at	each	call	site.

When	an	inlined	function	takes	a	lambda	argument,	the	compiler	inlines	the
lambda	body	together	with	the	function	body.	Thus,	no	additional	classes	or
objects	are	created	to	pass	the	lambda	to	the	function.	(This	only	works	when	the
lambda	is	called	directly,	or	passed	to	another	inline	function).

Although	you	can	apply	it	to	any	function,	inline	is	intended	for	either	inlining
lambda	bodies	or	creating	reified	generics.	You	can	find	more	information	about
inline	functions	here.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.

https://kotlinlang.org/docs/reference/inline-functions.html


Creating	Generics

Generic	code	works	with	types	that	are	“specified	later.”

Ordinary	classes	and	functions	work	with	specific	types.	If	you	want	code	to
work	across	more	types,	this	rigidity	can	be	overconstraining.

Polymorphism	is	an	object-oriented	generalization	tool.	You	write	a	function	that
takes	a	base-class	object	as	a	parameter,	then	call	that	function	with	an	object	of
any	class	derived	from	that	base	class—including	classes	that	haven’t	yet	been
created.	Now	your	function	is	more	general,	and	useful	in	more	places.

A	single	hierarchy	can	be	too	limiting	because	you	must	inherit	from	that
hierarchy	to	produce	an	object	that	fits	your	function	parameter.	If	a	function
parameter	is	an	interface	instead	of	a	class,	the	limitations	are	loosened	to
include	anything	that	implements	that	interface.	This	gives	the	client
programmer	the	option	of	implementing	an	interface	in	combination	with	an
existing	class—that	is,	to	adapt	an	existing	class	to	fit	the	function.	Used	this
way,	interfaces	can	cut	across	class	hierarchies.

Sometimes	even	an	interface	is	too	restrictive	because	it	forces	you	to	work	with
only	that	interface.	Your	code	can	be	even	more	general	if	it	works	with	“some
unspecified	type,”	rather	than	a	particular	interface	or	class.	That	“unspecified
type”	is	a	generic	type	parameter.

Creating	generic	types	and	functions	is	a	fairly	complex	topic,	much	of	which	is
outside	the	scope	of	this	book.	This	atom	attempts	to	give	you	just	enough
background	so	you	aren’t	surprised	when	you	come	across	generic	concepts	and
keywords.	If	you	want	to	get	serious	about	writing	generic	types	and	functions
you’ll	need	to	study	more	advanced	resources.

Any

Any	is	the	root	of	the	Kotlin	class	hierarchy.	Every	Kotlin	class	has	Any	as	a
superclass.	One	way	to	work	with	unspecified	types	is	by	passing	Any



arguments,	and	this	can	sometimes	confuse	the	issue	of	when	to	use	generics.	If
Any	works,	it’s	the	simpler	solution,	and	simpler	is	generally	better.

There	are	two	ways	to	use	Any.	The	first,	and	most	straightforward	approach,	is
when	you	only	need	to	operate	on	an	Any,	and	nothing	more.	This	is	extremely
limiting—Any	has	only	three	member	functions:	equals(),	hashCode()	and
toString().	There	are	also	extension	functions,	but	these	cannot	perform	any
direct	operations	on	the	type.	For	example,	apply()	only	applies	its	function
argument	to	the	Any.

If	you	know	the	type	of	the	Any,	you	can	cast	it	and	perform	type-specific
operations.	Because	this	involves	run-time	type	information	(as	shown	in
Downcasting),	you	risk	a	runtime	error	if	you	pass	the	wrong	type	to	your
function	(there’s	also	a	slight	performance	impact).	Sometimes	this	is	justified	to
gain	the	benefit	of	eliminating	code	duplication.

For	example,	suppose	three	types	each	have	the	ability	to	communicate.	They
come	from	different	libraries	so	you	can’t	just	put	them	in	the	same	hierarchy,
and	they	have	different	function	names	for	communicating:

//	CreatingGenerics/Speakers.kt

package	creatinggenerics

import	atomictest.eq

class	Person	{

		fun	speak()	=	"Hi!"

}

class	Dog	{

		fun	bark()	=	"Ruff!"

}

class	Robot	{

		fun	communicate()	=	"Beep!"

}

fun	talk(speaker:	Any)	=	when	(speaker)	{

		is	Person	->	speaker.speak()

		is	Dog	->	speaker.bark()

		is	Robot	->	speaker.communicate()

		else	->	"Not	a	talker"	//	Or	exception

}

fun	main()	{

		talk(Person())	eq	"Hi!"

		talk(Dog())	eq	"Ruff!"

		talk(Robot())	eq	"Beep!"

		talk(11)	eq	"Not	a	talker"

}



The	when	expression	discovers	the	type	of	the	speaker	and	calls	the	appropriate
function.	If	you	don’t	think	talk()	will	ever	need	to	work	with	additional	types,
this	is	a	tolerable	solution.	Otherwise,	it	requires	you	to	modify	talk()	for	each
new	type	you	add,	and	to	rely	on	runtime	information	to	discover	when	you	miss
something.

Defining	Generics
Duplicated	code	is	a	candidate	for	conversion	into	a	generic	function	or	type.
You	do	this	by	adding	angle	brackets	(<>)	containing	one	or	more	generic
placeholders.	Here,	the	generic	placeholder	T	represents	the	unknown	type:

//	CreatingGenerics/DefiningGenerics.kt

package	creatinggenerics

fun	<T>	gFunction(arg:	T):	T	=	arg

class	GClass<T>(val	x:	T)	{

		fun	f():	T	=	x

}

class	GMemberFunction	{

		fun	<T>	f(arg:	T):	T	=	arg

}

interface	GInterface<T>	{

		val	x:	T

		fun	f():	T

}

class	GImplementation<T>(

		override	val	x:	T

)	:	GInterface<T>	{

		override	fun	f():	T	=	x

}

class	ConcreteImplementation

		:	GInterface<String>	{

		override	val	x:	String

				get()	=	"x"

		override	fun	f()	=	"f()"

}

fun	basicGenerics()	{

		gFunction("Yellow")

		gFunction(1)

		gFunction(Dog()).bark()												//	[1]

		gFunction<Dog>(Dog()).bark()

		GClass("Cyan").f()

		GClass(11).f()

		GClass(Dog()).f().bark()											//	[2]

		GClass<Dog>(Dog()).f().bark()

		GMemberFunction().f("Amber")

		GMemberFunction().f(111)

		GMemberFunction().f(Dog()).bark()		//	[3]



		GMemberFunction().f<Dog>(Dog()).bark()

		GImplementation("Cyan").f()

		GImplementation(11).f()

		GImplementation(Dog()).f().bark()

		ConcreteImplementation().f()

		ConcreteImplementation().x

}

basicGenerics()	shows	that	each	generic	handles	different	types:

gFunction()	takes	a	parameter	of	type	T	and	returns	a	T	result.
GClass	stores	a	T.	Its	member	function	f()	returns	a	T.
GMemberFunction	parameterizes	a	member	function	within	the	class,	rather
than	parameterizing	the	entire	class.
You	can	also	define	an	interface	with	generic	parameters	as	shown	in
GInterface.	An	implementation	of	GInterface	can	either	redefine	a	type
parameter	as	in	GImplementation,	or	provide	a	specific	type	argument,	as
in	ConcreteImplementation.

Notice	in	[1],	[2]	and	[3]	that	we	are	able	to	call	bark()	on	the	result,	because
that	result	emerges	as	type	Dog.

Consider	[1],	[2]	and	[3],	and	the	lines	immediately	following	them.	The	type	T
is	determined	by	type	inference	for	[1],	[2]	and	[3].	Sometimes	this	is	not
possible	if	a	generic	or	its	invocation	is	too	complex	to	be	parsed	by	the
compiler.	In	this	case	you	must	specify	the	type(s)	using	the	syntax	shown	in	the
lines	immediately	following	[1],	[2]	and	[3].

Preserving	Type	Information
As	you	will	see	later	in	this	atom,	code	within	generic	classes	and	functions	can’t
know	the	type	of	T—this	is	called	erasure.	Generics	can	be	thought	of	as	a	way
to	preserve	type	information	for	the	return	value.	This	way,	you	don’t	have	to
write	code	to	explicitly	check	and	cast	a	return	value	to	the	desired	type.

A	common	use	of	generic	code	is	for	containers	that	hold	other	objects.	Consider
a	CarCrate	class	that	acts	as	a	trivial	collection	by	holding	and	producing	a
single	element	of	type	Car:

//	CreatingGenerics/CarCrate.kt

package	creatinggenerics

import	atomictest.eq



class	Car	{

		override	fun	toString()	=	"Car"

}

class	CarCrate(private	var	c:	Car)	{

		fun	put(car:	Car)	{	c	=	car	}

		fun	get():	Car	=	c

}

fun	main()	{

		val	cc	=	CarCrate(Car())

		val	car:	Car	=	cc.get()

		car	eq	"Car"

}

When	we	call	cc.get(),	the	result	comes	back	as	type	Car.	We’d	like	to	make
this	tool	available	to	more	objects	than	just	Cars,	so	we	generify	this	class	as
Crate<T>:

//	CreatingGenerics/Crate.kt

package	creatinggenerics

import	atomictest.eq

open	class	Crate<T>(private	var	contents:	T)	{

		fun	put(item:	T)	{	contents	=	item	}

		fun	get():	T	=	contents

}

fun	main()	{

		val	cc	=	Crate(Car())

		val	car:	Car	=	cc.get()

		car	eq	"Car"

}

Crate<T>	ensures	that	you	can	only	put()	a	T	into	the	Crate,	and	when	you	call
get()	on	that	Crate,	the	result	comes	back	as	type	T.

We	can	make	a	version	of	map()	for	Crate	by	defining	a	generic	extension
function:

//	CreatingGenerics/MapCrate.kt

package	creatinggenerics

import	atomictest.eq

fun	<T,	R>	Crate<T>.map(f:(T)	->	R):	List<R>	=

		listOf(f(get()))

fun	main()	{

		Crate(Car()).map	{	it.toString()	+	"x"	}	eq

				"[Carx]"

}

map()	returns	the	List	of	results	produced	by	applying	f()	to	each	element	in
the	input	sequence.	Because	Crate	only	contains	a	single	element,	the	result	is



always	a	List	of	one	element.	There	are	two	generic	arguments:	T	for	the	input
value	and	R	for	the	result,	allowing	f()	to	produce	a	result	type	that	is	different
from	the	input	type.

Type	Parameter	Constraints
A	type	parameter	constraint	says	that	the	generic	argument	type	must	be
inherited	from	the	constraint.	<T	:	Base>	means	that	T	must	be	of	type	Base	or
something	derived	from	Base.	This	section	shows	that	using	constraints	is
different	from	a	non-generic	type	that	inherits	Base.

Consider	a	type	hierarchy	that	models	different	items	and	ways	to	dispose	of
them:

//	CreatingGenerics/Disposable.kt

package	creatinggenerics

import	atomictest.eq

interface	Disposable	{

		val	name:	String

		fun	action():	String

}

class	Compost(override	val	name:	String)	:

		Disposable	{

		override	fun	action()	=	"Add	to	composter"

}

interface	Transport	:	Disposable

class	Donation(override	val	name:	String)	:

		Transport	{

		override	fun	action()	=	"Call	for	pickup"

}

class	Recyclable(override	val	name:	String)	:

		Transport	{

		override	fun	action()	=	"Put	in	bin"

}

class	Landfill(override	val	name:	String)	:

		Transport	{

		override	fun	action()	=	"Put	in	dumpster"

}

val	items	=	listOf(

		Compost("Orange	Peel"),

		Compost("Apple	Core"),

		Donation("Couch"),

		Donation("Clothing"),

		Recyclable("Plastic"),

		Recyclable("Metal"),

		Recyclable("Cardboard"),

		Landfill("Trash"),

)



val	recyclables	=

		items.filterIsInstance<Recyclable>()

Using	a	constraint,	we	can	access	properties	and	functions	of	the	constrained
type	within	a	generic	function:

//	CreatingGenerics/Constrained.kt

package	creatinggenerics

import	atomictest.eq

fun	<T:	Disposable>	nameOf(disposable:	T)	=

		disposable.name

//	As	an	extension:

fun	<T:	Disposable>	T.name()	=	name

fun	main()	{

		recyclables.map	{	nameOf(it)	}	eq

				"[Plastic,	Metal,	Cardboard]"

		recyclables.map	{	it.name()	}	eq

				"[Plastic,	Metal,	Cardboard]"

}

We	cannot	access	name	without	the	constraint.

This	achieves	the	same	result	without	generics:

//	CreatingGenerics/NonGenericConstraint.kt

package	creatinggenerics

import	atomictest.eq

fun	nameOf2(disposable:	Disposable)	=

		disposable.name

fun	Disposable.name2()	=	name

fun	main()	{

		recyclables.map	{	nameOf2(it)	}	eq

				"[Plastic,	Metal,	Cardboard]"

		recyclables.map	{	it.name2()	}	eq

				"[Plastic,	Metal,	Cardboard]"

}

Why	use	a	constraint	instead	of	ordinary	polymorphism?	The	answer	is	in	the
return	type.	With	generics,	the	return	type	can	be	exact,	rather	than	being	upcast
to	the	base	type:

//	CreatingGenerics/SameReturnType.kt

package	creatinggenerics

import	kotlin.random.Random

private	val	rnd	=	Random(47)

fun	List<Disposable>.aRandom():	Disposable	=

		this[rnd.nextInt(size)]



fun	<T:	Disposable>	List<T>.bRandom():	T	=

		this[rnd.nextInt(size)]

fun	<T>	List<T>.cRandom():	T	=

		this[rnd.nextInt(size)]

fun	sameReturnType()	{

		val	a:	Disposable	=	recyclables.aRandom()

		val	b:	Recyclable	=	recyclables.bRandom()

		val	c:	Recyclable	=	recyclables.cRandom()

}

Without	generics,	aRandom()	can	only	produce	a	base-class	Disposable,	while
both	bRandom()	and	cRandom()	produce	a	Recyclable.	bRandom()	never
accesses	any	elements	of	T,	therefore	its	constraint	is	pointless	and	it	ends	up
being	the	same	as	cRandom(),	which	doesn’t	use	a	constraint.

The	only	time	you	need	constraints	is	if	you	require	both	of	the	following:

1.	 Access	a	function	or	property.
2.	 Preserve	the	type	when	returning	it.

//	CreatingGenerics/Constraints.kt

package	creatinggenerics

import	kotlin.random.Random

private	val	rnd	=	Random(47)

//	Accesses	action()	but	can't

//	return	the	exact	type:

fun	List<Disposable>.inexact():	Disposable	{

		val	d:	Disposable	=	this[rnd.nextInt(size)]

		d.action()

		return	d

}

//	Can't	access	action()	without	a	constraint:

fun	<T>	List<T>.noAccess():	T	{

		val	d:	T	=	this[rnd.nextInt(size)]

		//	d.action()

		return	d

}

//	Access	action()	and	return	the	exact	type:

fun	<T:	Disposable>	List<T>.both():	T	{

		val	d:	T	=	this[rnd.nextInt(size)]

		d.action()

		return	d

}

fun	constraints()	{

		val	i:	Disposable	=	recyclables.inexact()

		val	n:	Recyclable	=	recyclables.noAccess()

		val	b:	Recyclable	=	recyclables.both()

}



inexact()	is	an	extension	to	List<Disposable>,	which	allows	it	to	access
action(),	but	it	is	not	generic	so	it	can	only	return	the	base	type	Disposable.	As
a	generic,	noAccess()	is	able	to	return	the	exact	type	of	T,	but	without	a
constraint	it	cannot	access	action().	Only	when	you	add	the	constraint	on	T	in
both()	are	you	able	to	access	action()	and	return	the	exact	type	T.

Type	Erasure
Java	compatibility	is	an	essential	part	of	Kotlin.	In	Java,	generics	were	not	part
of	the	original	language—they	were	added	years	later,	after	large	bodies	of	code
had	been	written.	Forcing	generics	into	Java	without	breaking	existing	code
required	a	crucial	compromise:	the	generic	types	are	only	available	during
compilation	but	are	not	preserved	at	runtime—the	types	are	erased.	This	erasure
affects	Kotlin.

Let’s	pretend	erasure	doesn’t	happen:

//	CreatingGenerics/Erasure.kt

package	creatinggenerics

fun	main()	{

		val	strings	=	listOf("a",	"b",	"c")

		val	all:	List<Any>	=	listOf(1,	2,	"x")

		useList(strings)

		useList(all)

}

fun	useList(list:	List<Any>)	{

		//	if	(list	is	List<String>)	{}		//	[1]

}

Uncomment	line	[1]	and	you’ll	see	the	following	error:	“Cannot	check	for
instance	of	erased	type:	List<String>”.	You	can’t	test	for	the	generic	type	at
runtime	because	the	type	information	has	been	erased.

If	erasure	didn’t	happen,	the	list	might	look	like	this,	assuming	additional	type
information	is	placed	at	the	end	of	the	list	(it	does	not	work	this	way!):



Reified	Generics

Because	generic	types	are	erased,	type	information	is	not	stored	in	the	List.
Instead,	both	strings	and	all	are	just	Lists,	with	no	additional	type
information:

Erased	Generics

You	cannot	guess	type	information	from	the	List	contents	without	analyzing	all
elements.	Checking	only	the	first	element	from	the	second	list	leads	you	to
incorrectly	assume	that	it’s	a	List<Int>.

The	Kotlin	designers	decided	to	follow	Java	and	use	erasure,	for	two	reasons:

1.	 Java	compatibility.
2.	 Overhead.	Storing	generic	type	information	significantly	increases	the

memory	occupied	by	a	generic	List	or	Map.	For	example,	a	standard	Map
consists	of	many	Map.Entry	objects,	and	Map.Entry	is	a	generic	class.
Thus,	if	generics	were	reified	everywhere	by	default,	each	key	and	value	of
every	Map.Entry	would	contain	additional	type	information.

Reification	of	Function	Type	Arguments
Type	information	is	also	erased	for	generic	function	calls,	which	means	you
can’t	do	much	with	a	generic	parameter	inside	a	function.



To	retain	type	information	for	function	arguments,	add	the	reified	keyword.
Consider	a	function	a()	that	requires	class	information	to	perform	its	task:

//	CreatingGenerics/ReificationA.kt

package	creatinggenerics

import	kotlin.reflect.KClass

fun	<T:	Any>	a(kClass:	KClass<T>)	{

		//	Uses	KClass<T>

}

When	we	call	a()	inside	a	second	generic	function	b(),	we	would	like	to	use
type	information	for	the	generic	argument:

//	CreatingGenerics/ReificationB.kt

package	creatinggenerics

//	Doesn't	compile	because	of	erasure:

//	fun	<T:	Any>	b()	=	a(T::class)

The	type	information	for	T	is	erased	when	this	code	runs,	so	b()	won’t	compile.
You	can’t	access	the	class	of	the	generic	type	parameter	inside	the	function	body.

The	Java	solution	is	to	pass	type	information	into	the	function	by	hand:

//	CreatingGenerics/ReificationC.kt

package	creatinggenerics

import	kotlin.reflect.KClass

fun	<T:	Any>	c(kClass:	KClass<T>)	=	a(kClass)

class	K

val	kc	=	c(K::class)

Passing	explicit	type	information	should	be	redundant	because	the	compiler
knows	the	type	of	T,	and	could	silently	pass	it	for	you.	This	is	effectively	what
the	reified	keyword	does.

To	use	reified,	the	function	must	also	be	inline:

//	CreatingGenerics/ReificationD.kt

package	creatinggenerics

inline	fun	<reified	T:	Any>	d()	=	a(T::class)

val	kd	=	d<K>()

d()	produces	the	same	effect	as	c(),	but	d()	doesn’t	require	the	class	reference
as	an	argument.



reified	tells	the	compiler	to	preserve	the	information	about	the	corresponding
type	argument.	The	type	information	is	now	available	at	runtime	so	you	can
access	it	inside	the	function	body.

Reification	allows	the	use	of	is	with	a	generic	parameter	type:

//	CreatingGenerics/CheckType.kt

package	creatinggenerics

import	atomictest.eq

inline	fun	<reified	T>	check(t:	Any)	=	t	is	T

//	fun	<T>	check1(t:	Any)	=	t	is	T					//	[1]

fun	main()	{

		check<String>("1")	eq	true

		check<Int>("1")	eq	false

}

[1]	Without	reified,	the	type	information	is	erased	so	you	can’t	check
whether	a	given	element	is	an	instance	of	T.

In	the	following	example,	select()	produces	the	name	of	each	Disposable	item
of	a	particular	subtype.	It	uses	reified	combined	with	a	constraint:

//	CreatingGenerics/Select.kt

package	creatinggenerics

import	atomictest.eq

inline	fun	<reified	T	:	Disposable>	select()	=

		items.filterIsInstance<T>().map	{	it.name	}

fun	main()	{

		select<Compost>()	eq

				"[Orange	Peel,	Apple	Core]"

		select<Donation>()	eq	"[Couch,	Clothing]"

		select<Recyclable>()	eq

				"[Plastic,	Metal,	Cardboard]"

		select<Landfill>()	eq	"[Trash]"

}

The	library	function	filterIsInstance()	is	itself	defined	using	the	reified
keyword.

Variance
Combining	generics	and	inheritance	produces	two	dimensions	of	change.	If	you
have	a	Container<T>	and	you	want	to	assign	it	to	a	Container<U>	where	T	and	U
have	an	inheritance	relationship,	you	must	place	constraints	upon	Container
using	the	in	or	out	variance	annotations,	depending	on	how	you	want	to	use
Container.



Here	are	three	versions	of	a	Box	container:	a	basic	Box<T>,	one	using	<in	T>	and
one	using	<out	T>:

//	CreatingGenerics/InAndOutBoxes.kt

package	variance

class	Box<T>(private	var	contents:	T)	{

		fun	put(item:	T)	{	contents	=	item	}

		fun	get():	T	=	contents

}

class	InBox<in	T>(private	var	contents:	T)	{

		fun	put(item:	T)	{	contents	=	item	}

}

class	OutBox<out	T>(private	var	contents:	T)	{

		fun	get():	T	=	contents

}

in	T	means	that	member	functions	of	the	class	can	only	accept	arguments	of
type	T,	but	cannot	return	values	of	type	T.	That	is,	T	objects	can	be	placed	into	an
InBox,	but	cannot	come	out.

out	T	means	that	member	functions	can	return	T	objects,	but	cannot	accept
arguments	of	type	T—you	cannot	place	T	objects	into	an	OutBox.

Why	do	we	need	these	constraints?	Consider	this	hierarchy:

//	CreatingGenerics/Pets.kt

package	variance

open	class	Pet

class	Cat	:	Pet()

class	Dog	:	Pet()

Cat	and	Dog	are	both	subtypes	of	Pet.	Is	there	a	subtyping	relation	between
Box<Cat>	and	Box<Pet>?	It	seems	like	we	should	be	able	to	assign,	for	example,
a	Box	of	Cat	to	a	Box	of	Pet	or	to	a	Box	of	Any	(because	Any	is	a	supertype	of
everything):

//	CreatingGenerics/BoxAssignment.kt

package	variance

val	catBox	=	Box<Cat>(Cat())

//	val	petBox:	Box<Pet>	=	catBox

//	val	anyBox:	Box<Any>	=	catBox

If	Kotlin	allowed	this,	petBox	would	have	put(item:	Pet).	Dog	is	also	a	Pet,	so
this	would	allow	you	to	put	a	Dog	into	catBox,	violating	the	“cat-ness”	of	that
Box.



Worse,	anyBox	would	have	put(item:	Any),	so	you	could	put	an	Any	into
catBox—the	container	would	have	no	type	safety	at	all.

If	we	prevent	the	use	of	put(),	the	assignments	are	safe	because	no	one	can	put
a	Dog	into	an	OutBox<Cat>.	The	compiler	allows	us	to	assign	an	OutBox<Cat>	to
an	OutBox<Pet>	or	to	an	OutBox<Any>,	because	the	out	annotation	prevents	them
from	having	put()	functions:

//	CreatingGenerics/OutBoxAssignment.kt

package	variance

val	outCatBox:	OutBox<Cat>	=	OutBox(Cat())

val	outPetBox:	OutBox<Pet>	=	outCatBox

val	outAnyBox:	OutBox<Any>	=	outCatBox

fun	getting()	{

		val	cat:	Cat	=	outCatBox.get()

		val	pet:	Pet	=	outPetBox.get()

		val	any:	Any	=	outAnyBox.get()

}

With	no	put(),	we	cannot	place	a	Dog	into	an	OutBox<Cat>,	so	its	“cat-ness”	is
preserved.

Without	a	get(),	an	InBox<Any>	can	be	assigned	to	an	InBox<Pet>,	an
InBox<Cat>	or	an	InBox<Dog>:

//	CreatingGenerics/InBoxAssignment.kt

package	variance

val	inBoxAny:	InBox<Any>	=	InBox(Any())

val	inBoxPet:	InBox<Pet>	=	inBoxAny

val	inBoxCat:	InBox<Cat>	=	inBoxAny

val	inBoxDog:	InBox<Dog>	=	inBoxAny

fun	main()	{

		inBoxAny.put(Any())

		inBoxAny.put(Pet())

		inBoxAny.put(Cat())

		inBoxAny.put(Dog())

		inBoxPet.put(Pet())

		inBoxPet.put(Cat())

		inBoxPet.put(Dog())

		inBoxCat.put(Cat())

		inBoxDog.put(Dog())

}

It	is	safe	to	put()	an	Any,	Pet,	Cat	or	Dog	into	an	InBox<Any>,	while	you	can
only	put()	a	Pet,	Cat	or	Dog	into	an	InBox<Pet>.	inBoxCat	and	inBoxDog	will



only	accept	Cats	and	Dogs,	respectively.	These	are	the	behaviors	we	expect	for
boxes	that	have	those	type	parameters,	and	the	compiler	enforces	it.

Here’s	a	summary	of	the	subtyping	relationships	for	Box,	OutBox	and	InBox:

Variance

Box<T>	is	invariant.	This	means	that	neither	Box<Cat>	nor	Box<Pet>	is	a
subtype	of	the	other,	so	neither	can	be	assigned	to	the	other.
OutBox<out	T>	is	covariant.	This	means	that	OutBox<Cat>	is	a	subtype	of
OutBox<Pet>.	When	you	upcast	an	OutBox<Cat>	to	an	OutBox<Pet>,	it
varies	in	the	same	way	as	upcasting	a	Cat	to	a	Pet.
InBox<in	T>	is	contravariant.	This	means	that	InBox<Pet>	is	a	subtype	of
InBox<Cat>.	When	you	upcast	an	InBox<Pet>	to	an	InBox<Cat>,	it	varies	in
the	opposite	way	as	upcasting	a	Cat	to	a	Pet.

A	read-only	List	from	the	Kotlin	standard	library	is	covariant.	You	can	assign	a
List<Cat>	to	a	List<Pet>.	A	MutableList	is	invariant	because	it	contains	an
add():

//	CreatingGenerics/CovariantList.kt

package	variance

fun	main()	{

		val	catList:	List<Cat>	=	listOf(Cat())

		val	petList:	List<Pet>	=	catList

		var	mutablePetList:	MutableList<Pet>	=

				mutableListOf(Cat())

		mutablePetList.add(Dog())

		//	Type	mismatch:

		//	mutablePetList	=

		//				mutableListOf<Cat>(Cat())		//	[1]

}

[1]	If	this	assignment	worked,	we	could	violate	the	“cat-ness”	of	the
mutableListOf<Cat>	by	adding	a	Dog.



Functions	can	have	covariant	return	types.	This	means	that	an	overriding
function	can	return	a	type	that’s	more	specific	than	the	function	it	overrides:

//	CreatingGenerics/CovariantReturnTypes.kt

package	variance

interface	Parent

interface	Child	:	Parent

interface		X	{

		fun	f():	Parent

}

interface	Y	:	X	{

		override	fun	f():	Child

}

Notice	how	the	overridden	f()	in	Y	returns	a	Child,	while	f()	in	X	returns	a
Parent.

This	subsection	has	only	been	a	light	introduction	to	the	topic	of	variance.

-

Repeated	code	is	a	candidate	for	generic	types	or	functions.	This	atom	only
provides	a	basic	grasp	of	the	ideas—if	you	need	deeper	understanding	you	must
find	it	in	a	more	advanced	treatment.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Operator	Overloading

In	the	context	of	computer	programming,	overloading	means	“adding	extra
meaning	to	something	that	already	exists.”

Operator	overloading	allows	you	to	take	an	operator	like	+	and	give	it	meaning
for	your	new	type,	or	extra	meaning	for	an	existing	type.

Operator	overloading	has	a	tumultuous	past.	It	was	popularized	in	C++,	but
because	C++	had	no	garbage	collection,	writing	overloaded	operators	was
difficult.	As	a	result,	the	early	Java	designers	deemed	operator	overloading
“bad”	and	didn’t	allow	it	in	Java,	even	though	Java’s	garbage	collection	would
have	made	it	relatively	easy.	The	simplicity	of	operator	overloading	when
supported	by	garbage	collection	was	demonstrated	in	the	Python	language,
which	constrained	you	to	a	limited	(familiar)	set	of	operators,	as	did	C++.	Scala
then	experimented	with	allowing	you	to	invent	your	own	operators,	causing
some	programmers	to	abuse	this	feature	and	create	incomprehensible	code.
Kotlin	learned	from	these	languages,	and	has	simplified	the	process	of	operator
overloading	but	restricts	your	choices	to	a	reasonable	and	familiar	set	of
operators.	In	addition,	the	rules	of	operator	precedence	cannot	be	changed.

We’ll	create	a	small	class	Num	and	add	an	overloaded	+	as	an	extension	function.
To	overload	an	operator	you	use	the	operator	keyword	before	fun,	followed	by
the	special	predefined	function	name	for	that	operator.	For	example,	the	special
function	name	for	the	+	operator	is	plus():

//	OperatorOverloading/Num.kt

package	operatoroverloading

import	atomictest.eq

data	class	Num(val	n:	Int)

operator	fun	Num.plus(rval:	Num)	=

		Num(n	+	rval.n)

fun	main()	{

		Num(4)	+	Num(5)	eq	Num(9)

		Num(4).plus(Num(5))	eq	Num(9)

}



If	you	were	defining	a	normal	(non-operator)	function	for	use	between	two
operands,	you’d	use	the	infix	keyword,	but	operators	are	already	infix.
Because	plus()	is	an	ordinary	function,	you	can	also	call	it	in	the	conventional
way.

When	you	define	an	operator	as	a	member	function,	you	can	access	private
elements	in	a	class	that	an	extension	function	cannot:

//	OperatorOverloading/MemberOperator.kt

package	operatoroverloading

import	atomictest.eq

data	class	Num2(private	val	n:	Int)	{

		operator	fun	plus(rval:	Num2)	=

				Num2(n	+	rval.n)

}

//	Cannot	access	'n':	it	is	private	in	'Num2':

//	operator	fun	Num2.minus(rval:	Num2)	=

//			Num2(n	-	rval.n)

fun	main()	{

		Num2(4)	+	Num2(5)	eq	Num2(9)

}

In	some	contexts	it’s	helpful	to	create	special	meaning	for	an	operator.	Here,	we
model	a	Molecule	with	a	+	that	attaches	it	to	another	Molecule.	The	attached
property	is	the	link	between	Molecules:

//	OperatorOverloading/Molecule.kt

package	operatoroverloading

import	atomictest.eq

data	class	Molecule(

		val	id:	Int	=	idCount++,

		var	attached:	Molecule?	=	null

)	{

		companion	object	{

				private	var	idCount	=	0

		}

		operator	fun	plus(other:	Molecule)	{

				attached	=	other

		}

}

fun	main()	{

		val	m1	=	Molecule()

		val	m2	=	Molecule()

		m1	+	m2																							//	[1]

		m1	eq	"Molecule(id=0,	attached="	+

				"Molecule(id=1,	attached=null))"

}



[1]	Reads	like	a	familiar	math	expression,	but	to	the	person	using	the	model
it	might	be	an	especially	meaningful	syntax.

This	example	is	incomplete;	if	you	add	the	line	m2	+	m1,	then	try	to	display	m2,
you’ll	get	a	stack	overflow	(can	you	fix	the	problem?).

Equality
Invoking	==	(equality)	or	!=	(inequality)	calls	the	equals()	member	function.
data	classes	automatically	redefine	equals()	to	compare	the	stored	data,	but	if
you	don’t	redefine	equals()	for	non-data	classes,	the	default	version	compares
references	rather	than	contents:

//	OperatorOverloading/DefaultEquality.kt

package	operatoroverloading

import	atomictest.eq

class	A(val	i:	Int)

data	class	D(val	i:	Int)

fun	main()	{

		//	Normal	class:

		val	a	=	A(1)

		val	b	=	A(1)

		val	c	=	a

		(a	==	b)	eq	false

		(a	==	c)	eq	true

		//	Data	class:

		val	d	=	D(1)

		val	e	=	D(1)

		(d	==	e)	eq	true

}

a	and	b	refer	to	different	objects	in	memory,	so	the	references	are	different	and	a
==	b	is	false,	even	though	the	two	objects	store	identical	data.	a	and	c	refer	to
the	same	object	in	memory,	so	comparing	them	produces	true.	Because	the	data
class	D	automatically	generates	an	equals()	that	looks	at	the	contents	of	D,	d
==	e	produces	true.

equals()	is	the	only	operator	that	cannot	be	an	extension	function;	it	must	be
overridden	as	a	member	function.	When	defining	your	own	equals(),	you	are
overriding	the	default	equals(other:	Any?).	Notice	that	the	type	of	other	is
Any?	rather	than	the	specific	type	of	your	class.	This	allows	you	to	compare	your
type	with	other	types,	which	means	you	must	choose	the	types	allowed	for
comparison:

//	OperatorOverloading/DefiningEquality.kt

package	operatoroverloading



import	atomictest.eq

class	E(var	v:	Int)	{

		override	fun	equals(other:	Any?)	=	when	{

				this	===	other	->	true											//	[1]

				other	!is	E	->	false													//	[2]

				else	->	v	==	other.v													//	[3]

		}

		override	fun	hashCode():	Int	=	v

		override	fun	toString()	=	"E($v)"

}

fun	main()	{

		val	a	=	E(1)

		val	b	=	E(2)

		(a	==	b)	eq	false			//	a.equals(b)

		(a	!=	b)	eq	true				//	!a.equals(b)

		//	Reference	equality:

		(E(1)	===	E(1))	eq	false

}

[1]	This	is	an	optimization:	if	other	refers	to	the	same	object	in	memory,
the	result	is	automatically	true.	The	triple	equality	symbol	===	tests	for
reference	equality.
[2]	This	determines	that	the	type	of	other	must	be	the	same	as	the	current
type.	For	E	to	be	compared	to	other	types,	add	further	match	expressions.
[3]	This	compares	the	stored	data.	At	this	point	the	compiler	knows	that
other	is	of	type	E,	so	we	can	access	other.v	without	a	cast.

When	overriding	equals()	you	should	also	override	hashCode().	This	is	a
complex	topic,	but	the	basic	rule	is	that	if	two	objects	are	equal,	they	must
produce	the	same	hashCode()	value.	Standard	data	structures	like	Map	and	Set
will	fail	without	this	rule.	Things	get	even	more	complicated	with	an	open	class
because	you	must	compare	an	instance	with	all	possible	subclasses.	You	can
learn	more	about	the	concept	of	hashing	in	Wikipedia.

Defining	a	proper	equals()	and	hashCode()	is	beyond	the	scope	of	this	book—
what	we	do	here	illustrates	the	concept	and	works	for	our	simple	example	but
won’t	work	for	more	complicated	cases.	This	complexity	is	the	reason	that	data
classes	create	their	own	equals()	and	hashCode().	If	you	must	define	your	own
equals()	and	hashCode(),	we	recommend	automatically	generating	them	using
IntelliJ	IDEA	or	Android	Studio	with	the	action	Generate	->	equals	and
hashCode.

When	you	compare	nullable	objects	using	==,	Kotlin	enforces	null-checking.
This	can	be	achieved	using	either	if	or	the	Elvis	operator:

https://en.wikipedia.org/wiki/Hash_function
https://www.jetbrains.com/help/idea/generating-code.html#generate-equals-hashcode


//	OperatorOverloading/EqualsForNullable.kt

package	operatoroverloading

import	atomictest.eq

fun	equalsWithIf(a:	E?,	b:	E?)	=

		if	(a	===	null)

				b	===	null

		else

				a	==	b

fun	equalsWithElvis(a:	E?,	b:	E?)	=

		a?.equals(b)	?:	(b	===	null)

fun	main()	{

		val	x:	E?	=	null

		val	y	=	E(0)

		val	z:	E?	=	null

		(x	==	y)	eq	false

		(x	==	z)	eq	true

		equalsWithIf(x,	y)	eq	false

		equalsWithIf(x,	z)	eq	true

		equalsWithElvis(x,	y)	eq	false

		equalsWithElvis(x,	z)	eq	true

}

equalsWithIf()	first	checks	to	see	if	the	reference	a	is	null,	in	which	case	the
only	way	the	two	can	be	equal	is	if	the	reference	b	is	also	null.	If	a	is	not	a	null
reference,	the	member	equals()	is	used	to	compare	the	two.
equalsWithElvis()	achieves	the	same	effect,	but	more	succinctly	using	both	?.
and	?:.

Arithmetic	operators
We	can	define	basic	arithmetic	operators	as	extensions	to	class	E:

//	OperatorOverloading/ArithmeticOperators.kt

package	operatoroverloading

import	atomictest.eq

//	Unary	operators:

operator	fun	E.unaryPlus()	=	E(v)

operator	fun	E.unaryMinus()	=	E(-v)

operator	fun	E.not()	=	this

//	Increment/decrement:

operator	fun	E.inc()	=	E(v	+	1)

operator	fun	E.dec()	=	E(v	-	1)

fun	unary(a:	E)	{

		+a															//	unaryPlus()

		-a															//	unaryMinus()

		!a															//	not()

		var	b	=	a

		b++													//	inc()	(must	be	var)

		b--													//	dec()	(must	be	var)

}



//	Binary	operators:

operator	fun	E.plus(e:	E)	=	E(v	+	e.v)

operator	fun	E.minus(e:	E)	=	E(v	-	e.v)

operator	fun	E.times(e:	E)	=	E(v	*	e.v)

operator	fun	E.div(e:	E)	=	E(v	%	e.v)

operator	fun	E.rem(e:	E)	=	E(v	/	e.v)

fun	binary(a:	E,	b:	E)	{

		a	+	b												//	a.plus(b)

		a	-	b												//	a.minus(b)

		a	*	b												//	a.times(b)

		a	/	b												//	a.div(b)

		a	%	b												//	a.rem(b)

}

//	Augmented	assignment:

operator	fun	E.plusAssign(e:	E)	{	v	+=	e.v	}

operator	fun	E.minusAssign(e:	E)	{	v	-	e.v	}

operator	fun	E.timesAssign(e:	E)	{	v	*=	e.v	}

operator	fun	E.divAssign(e:	E)	{	v	/=	e.v	}

operator	fun	E.remAssign(e:	E)	{	v	%=	e.v	}

fun	assignment(a:	E,	b:	E)	{

		a	+=	b											//	a.plusAssign(b)

		a	-=	b											//	a.minusAssign(b)

		a	*=	b											//	a.timesAssign(b)

		a	/=	b											//	a.divAssign(b)

		a	%=	b											//	a.remAssign(b)

}

fun	main()	{

		val	a	=	E(2)

		val	b	=	E(3)

		a	+	b	eq	E(5)

		a	*	b	eq	E(6)

		val	x	=	E(1)

		x	+=	b	*	b

		x	eq	E(10)

}

When	writing	an	extension,	remember	that	the	properties	and	functions	of	the
extended	type	are	implicitly	available.	In	the	definition	of	unaryPlus(),	for
example,	the	v	in	E(v)	is	the	v	property	from	the	E	that’s	being	extended.

Note	that	x	+=	e	can	be	resolved	to	either	x	=	x.plus(e)	if	x	is	a	var	or	to
x.plusAssign(e)	if	x	is	val	and	the	corresponding	plusAssign()	member	is
available.	If	both	options	work,	the	compiler	emits	an	error	indicating	that	it
can’t	choose.

The	parameter	can	be	of	a	different	type	than	the	type	the	operator	extends.
Here,	the	+	operator	extension	for	E	takes	an	Int	parameter:

//	OperatorOverloading/DifferentTypes.kt

package	operatoroverloading

import	atomictest.eq



operator	fun	E.plus(i:	Int)	=	E(v	+	i)

fun	main()	{

		E(1)	+	10	eq	E(11)

}

Operator	precedence	is	fixed,	and	is	identical	for	both	built-in	types	and	custom
types.	For	example,	multiplication	has	a	higher	precedence	than	addition,	and
both	have	higher	precedence	than	equality;	thus	1	+	2	*	3	==	7	is	true.	You
can	find	the	operator	precedence	table	in	the	documentation.

Sometimes	when	you	mix	arithmetic	and	programming	operators,	the	result	isn’t
obvious.	Here,	we	combine	+	and	the	Elvis	operator:

//	OperatorOverloading/ConfusingPrecedence.kt

package	operatoroverloading

import	atomictest.eq

fun	main()	{

		val	x:	Int?	=	1

		val	y:	Int	=	2

		val	sum	=	x	?:	0	+	y

		sum	eq	1

		(x	?:	0)	+	y	eq	3				//	[1]

		x	?:	(0	+	y)	eq	1				//	[2]

}

In	sum,	+	has	higher	precedence	than	the	Elvis	operator	?:	so	the	result	is	1?:	(0
+	2)	==	1.	This	might	be	not	what	the	programmer	intended.	When	mixing
different	operations	where	precedence	is	not	obvious,	we	recommend	adding
parentheses	as	in	lines	[1]	and	[2].

Comparison
All	comparison	operations	<,	>,	<=,	>=	are	automatically	available	when	you
define	compareTo():

//	OperatorOverloading/Comparison.kt

package	operatoroverloading

import	atomictest.eq

operator	fun	E.compareTo(e:	E):	Int	=

		v.compareTo(e.v)

fun	main()	{

		val	a	=	E(2)

		val	b	=	E(3)

		(a	<	b)	eq	true					//	a.compareTo(b)	<	0

		(a	>	b)	eq	false				//	a.compareTo(b)	>	0

		(a	<=	b)	eq	true				//	a.compareTo(b)	<=	0

		(a	>=	b)	eq	false			//	a.compareTo(b)	>=	0

}

https://kotlinlang.org/docs/reference/grammar.html#expressions


compareTo()	must	return	an	Int	indicating:

0	if	the	elements	are	equal.
A	positive	value	if	the	first	element	(the	receiver)	is	bigger	than	the	second
(the	argument).
A	negative	value	if	the	first	element	is	smaller	than	the	second.

Ranges	and	Containers
rangeTo()	overloads	the	..	operator	for	creating	ranges,	while	contains()
indicates	whether	a	value	is	within	a	range:

//	OperatorOverloading/Ranges.kt

package	operatoroverloading

import	atomictest.eq

data	class	R(val	r:	IntRange)	{	//	Range

		override	fun	toString()	=	"R($r)"

}

operator	fun	E.rangeTo(e:	E)	=	R(v..e.v)

operator	fun	R.contains(e:	E):	Boolean	=

		e.v	in	r

fun	main()	{

		val	a	=	E(2)

		val	b	=	E(3)

		val	r	=	a..b								//	a.rangeTo(b)

		(a	in	r)	eq	true				//	r.contains(a)

		(a	!in	r)	eq	false		//	!r.contains(a)

		r	eq	R(2..3)

}

Container	Access
Overloading	contains()	allows	you	to	check	whether	a	value	is	in	a	container,
while	get()	and	set()	support	reading	and	assigning	elements	in	a	container
using	square	brackets:

//	OperatorOverloading/ContainerAccess.kt

package	operatoroverloading

import	atomictest.eq

data	class	C(val	c:	MutableList<Int>)	{

		override	fun	toString()	=	"C($c)"

}

operator	fun	C.contains(e:	E)	=	e.v	in	c

operator	fun	C.get(i:	Int):	E	=	E(c[i])

operator	fun	C.set(i:	Int,	e:	E)	{

		c[i]	=	e.v



}

fun	main()	{

		val	c	=	C(mutableListOf(2,	3))

		(E(2)	in	c)	eq	true		//	c.contains(E(2))

		(E(4)	in	c)	eq	false	//	c.contains(E(4))

		c[1]	eq	E(3)									//	c.get(1)

		c[1]	=	E(4)										//	c.set(2,	E(4))

		c	eq	C(mutableListOf(2,	4))

}

In	IntelliJ	IDEA	or	Android	Studio	you	can	navigate	to	a	declaration	of	a
function	or	a	class	from	its	usage.	This	also	works	with	operators:	you	can	put
the	cursor	on	..	then	navigate	to	its	definition	to	see	which	operator	function	is
called.

Invoke
Placing	parentheses	after	an	object	generates	a	call	to	invoke(),	so	the	invoke()
operator	makes	an	object	look	like	a	function.	You	can	define	invoke()	with	any
number	of	parameters:

//	OperatorOverloading/Invoke.kt

package	operatoroverloading

import	atomictest.eq

class	Func	{

		operator	fun	invoke()	=	"invoke()"

		operator	fun	invoke(i:	Int)	=	"invoke($i)"

		operator	fun	invoke(i:	Int,	j:	String)	=

				"invoke($i,	$j)"

		operator	fun	invoke(

				i:	Int,	j:	String,	k:	Double

		)	=	"invoke($i,	$j,	$k)"

}

fun	main()	{

		val	f	=	Func()

		f()	eq	"invoke()"

		f(22)	eq	"invoke(22)"

		f(22,	"Hi")	eq	"invoke(22,	Hi)"

		f(22,	"Three",	3.1416)	eq

				"invoke(22,	Three,	3.1416)"

}

You	can	also	define	invoke()	with	vararg	to	work	with	any	number	of
arguments	of	the	same	type	(see	Variable	Argument	Lists).

invoke()	can	be	defined	as	an	extension	function.	Here,	it’s	an	extension	for
String,	taking	a	function	as	a	parameter	and	calling	that	function	on	the	String:

//	OperatorOverloading/StringInvoke.kt

package	operatoroverloading

https://www.jetbrains.com/help/idea/navigating-through-the-source-code.html#go_to_declaration


import	atomictest.eq

operator	fun	String.invoke(

		f:	(s:	String)	->	String

)	=	f(this)

fun	main()	{

		"mumbling"	{	it.toUpperCase()	}	eq

				"MUMBLING"

}

Because	the	lambda	is	the	final	invoke()	argument,	it	can	be	called	without
parentheses.

If	you	have	a	function	reference,	you	can	use	it	to	call	the	function	directly	using
parentheses	or	via	invoke():

//	OperatorOverloading/InvokeFunctionType.kt

package	operatoroverloading

import	atomictest.eq

fun	main()	{

		val	func:	(String)	->	Int	=	{	it.length	}

		func("abc")	eq	3

		func.invoke("abc")	eq	3

		val	nullableFunc:	((String)	->	Int)?	=	null

		if	(nullableFunc	!=	null)	{

				nullableFunc("abc")

		}

		nullableFunc?.invoke("abc")		//	[1]

}

[1]	If	a	function	reference	is	nullable,	you	can	combine	invoke()	and	safe
access.

The	most	common	use	for	a	custom	invoke()	is	when	creating	DSLs.

Function	Names	in	Backticks
Kotlin	allows	spaces,	certain	nonstandard	characters,	and	reserved	words	in	a
function	name	by	placing	that	function	name	inside	backticks:

//	OperatorOverloading/Backticks.kt

package	operatoroverloading

fun	`A	long	name	with	spaces`()	=	Unit

fun	`*how*	is	this	working?`()	=	Unit

fun	`'when'	is	a	keyword`()	=	Unit

//	fun	`Illegal	characters	:<>`()	=	Unit



fun	main()	{

		`A	long	name	with	spaces`()

		`*how*	is	this	working?`()

		`'when'	is	a	keyword`()

}

This	can	be	particularly	helpful	for	Unit	Testing	because	you	can	create	readable
test	names	that	include	details	about	those	tests.	It	also	simplifies	interactions
with	Java	code.

You	can	easily	create	incomprehensible	code:

//	OperatorOverloading/Swearing.kt

package	operatoroverloading

import	atomictest.eq

infix	fun	String.`#!%`(s:	String)	=

		"$this	Rowzafrazaca	$s"

fun	main()	{

		"howdy"	`#!%`	"Ma'am!"	eq

				"howdy	Rowzafrazaca	Ma'am!"

}

Kotlin	accepts	this	code,	but	what	does	it	mean	to	the	reader?	Because	code	is
read	much	more	than	it	is	written,	you	should	make	your	programs	as
understandable	as	possible.

-

Operator	overloading	is	not	an	essential	feature,	but	is	an	excellent	example	of
how	a	language	is	more	than	just	a	way	to	manipulate	the	underlying	computer.
The	challenge	is	crafting	the	language	to	provide	better	ways	to	express	your
abstractions,	so	humans	have	an	easier	time	understanding	the	code	without
getting	bogged	down	in	needless	detail.	It’s	possible	to	define	operators	in	ways
that	obscure	meaning,	so	tread	carefully.

Everything	is	syntactic	sugar.	Toilet	paper	is	syntactic	sugar,	and	I	still	want	it.
—Barry	Hawkins

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Using	Operators

In	practice	you	rarely	overload	operators—usually	only	when	you	create
your	own	library.

However,	you	regularly	use	overloaded	operators,	often	without	noticing.	For
example,	the	Kotlin	standard	library	defines	numerous	operators	that	improve
your	experience	with	collections.	Here’s	some	familiar	code	seen	from	a	new
angle:

//	UsingOperators/NewAngle.kt

import	atomictest.eq

fun	main()	{

		val	list	=	MutableList(10)	{	'a'	+	it	}

		list[7]	eq	'h'	//	operator	get()

		list.get(8)	eq	'i'	//	Explicit	call

		list[9]	=	'x'	//	operator	set()

		list.set(9,	'x')	//	Explicit	call

		list[9]	eq	'x'

		('d'	in	list)	eq	true	//	operator	contains()

		list.contains('e')	eq	true	//	Explicit	call

}

Accessing	list	elements	using	square	brackets	calls	the	overloaded	operators
get()	and	set(),	while	in	calls	contains().

Calling	+=	on	a	mutable	collection	modifies	it,	while	calling	+	returns	a	new
collection	containing	the	old	elements	together	with	the	new	element:

//	UsingOperators/OperatorPlus.kt

import	atomictest.eq

fun	main()	{

		val	mutableList	=	mutableListOf(1,	2,	3)

		mutableList	+=	4		//	operator	plusAssign()

		mutableList.plusAssign(5)	//	Explicit

		mutableList	eq	"[1,	2,	3,	4,	5]"

		mutableList	+	99	eq	"[1,	2,	3,	4,	5,	99]"

		mutableList	eq	"[1,	2,	3,	4,	5]"

		val	list	=	listOf(1)		//	Read-only

		val	newList	=	list	+	2		//	operator	plus()

		list	eq	"[1]"

		newList	eq	"[1,	2]"

		val	another	=	list.plus(3)		//	Explicit

		another	eq	"[1,	3]"

}



Calling	+=	on	a	read-only	collection	probably	doesn’t	produce	what	you	expect:

//	UsingOperators/Unexpected.kt

import	atomictest.eq

fun	main()	{

		var	list	=	listOf(1,	2)

		list	+=	3		//	Probably	unexpected

		list	eq	"[1,	2,	3]"

}

In	a	mutable	collection,	a	+=	b	calls	plusAssign()	to	modify	a.	However,
plusAssign()	is	not	available	for	read-only	collections,	so	Kotlin	rewrites	a	+=
b	into	a	=	a	+	b.	This	calls	plus(),	which	doesn’t	change	the	collection,	but
rather	creates	a	new	one	and	assigns	the	result	to	the	var	list	reference.	The	net
effect	is	that	a	+=	b	still	produces	the	result	we	expect	for	a—at	least	for	simple
types	like	Int.

//	UsingOperators/ReadOnlyAndPlus.kt

import	atomictest.eq

fun	main()	{

		var	list	=	listOf(1,	2)

		val	initial	=	list

		list	+=	3

		list	eq	"[1,	2,	3]"

		list	=	list.plus(4)

		list	eq	"[1,	2,	3,	4]"

		initial	eq	"[1,	2]"

}

The	last	line	shows	that	the	initial	collection	remains	unchanged.	Creating	a
new	collection	for	every	added	element	probably	isn’t	your	intent.	The	problem
doesn’t	arise	if	you	use	val	for	list	instead	of	var	because	calling	+=	won’t
compile.	This	is	one	more	reason	to	use	val	by	default—only	use	var	when
necessary.

compareTo()	was	introduced	as	a	standalone	extension	function	in	Operator
Overloading.	However,	you	get	greater	benefits	if	your	class	implements	the
Comparable	interface	and	overrides	its	compareTo():

//	UsingOperators/CompareTo.kt

package	usingoperators

import	atomictest.eq

data	class	Contact(

		val	name:	String,

		val	mobile:	String

):	Comparable<Contact>	{

		override	fun	compareTo(

				other:	Contact



		):	Int	=	name.compareTo(other.name)

}

fun	main()	{

		val	alice	=	Contact("Alice",	"0123456789")

		val	bob	=	Contact("Bob",	"9876543210")

		val	carl	=	Contact("Carl",	"5678901234")

		(alice	<	bob)	eq	true

		(alice	<=	bob)	eq	true

		(alice	>	bob)	eq	false

		(alice	>=	bob)	eq	false

		val	contacts	=	listOf(bob,	carl,	alice)

		contacts.sorted()	eq

				listOf(alice,	bob,	carl)

		contacts.sortedDescending()	eq

				listOf(carl,	bob,	alice)

}

Any	two	Comparables	can	be	compared	using	<,	<=,	>	and	>=	(note	that	==	and
!=	are	not	included).	Kotlin	doesn’t	require	the	operator	modifier	when
overriding	compareTo()	because	it	has	already	been	defined	as	an	operator	in
the	Comparable	interface.

Implementing	Comparable	also	enables	features	like	sortability,	and	creating	a
range	of	instances	without	redefining	the	..	operator.	You	can	then	check	to	see
if	a	value	is	in	that	range:

//	UsingOperators/ComparableRange.kt

package	usingoperators

import	atomictest.eq

class	F(val	i:	Int):	Comparable<F>	{

		override	fun	compareTo(other:	F)	=

				i.compareTo(other.i)

}

fun	main()	{

		val	range	=	F(1)..F(7)

		(F(3)	in	range)	eq	true

		(F(9)	in	range)	eq	false

}

Prefer	implementing	Comparable.	Only	define	compareTo()	as	an	extension
function	when	using	a	class	you	have	no	control	over.

Destructuring	Operators
Another	group	of	operators	you	don’t	typically	define	is	the	componentN()
functions	(component1(),	component2()	etc.),	used	for	Destructuring
Declarations.	In	main(),	Kotlin	quietly	generates	calls	to	component1()	and
component2()	for	the	destructuring	assignment:



//	UsingOperators/DestructuringDuo.kt

package	usingoperators

import	atomictest.*

class	Duo(val	x:	Int,	val	y:	Int)	{

		operator	fun	component1():	Int	{

				trace("component1()")

				return	x

		}

		operator	fun	component2():	Int	{

				trace("component2()")

				return	y

		}

}

fun	main()	{

		val	(a,	b)	=	Duo(1,	2)

		a	eq	1

		b	eq	2

		trace	eq	"component1()	component2()"

}

The	same	approach	works	with	Maps,	which	use	an	Entry	type	containing
component1()	and	component2()	member	functions:

//	UsingOperators/DestructuringMap.kt

import	atomictest.eq

fun	main()	{

		val	map	=	mapOf("a"	to	1)

		for	((key,	value)	in	map)	{

				key	eq	"a"

				value	eq	1

		}

		//	The	Destructuring	assignment	becomes:

		for	(entry	in	map)	{

				val	key	=	entry.component1()

				val	value	=	entry.component2()

				key	eq	"a"

				value	eq	1

		}

}

You	can	use	destructuring	declarations	with	any	data	class	because
componentN()	functions	are	automatically	generated:

//	UsingOperators/DestructuringData.kt

package	usingoperators

import	atomictest.eq

data	class	Person(

		val	name:	String,

		val	age:	Int

)	{

		//	Compiler	generates:

		//	fun	component1()	=	name

		//	fun	component2()	=	age

}



fun	main()	{

		val	person	=	Person("Alice",	29)

		val	(name,	age)	=	person

		//	The	Destructuring	assignment	becomes:

		val	name_	=	person.component1()

		val	age_	=	person.component2()

		name	eq	"Alice"

		age	eq	29

		name_	eq	"Alice"

		age_	eq	29

}

Kotlin	generates	a	componentN()	function	for	each	property.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Property	Delegation

A	property	can	delegate	its	accessor	logic.

You	connect	a	property	to	a	delegate	with	the	by	keyword:

val/var	property	by	delegate

The	delegate’s	class	must	contain	a	getValue()	function	if	the	property	is	a	val
(read	only)	or	getValue()	and	setValue()	functions	if	the	property	is	a	var
(read/write).	First	consider	the	read-only	case:

//	PropertyDelegation/BasicRead.kt

package	propertydelegation

import	atomictest.eq

import	kotlin.reflect.KProperty

class	Readable(val	i:	Int)	{

		val	value:	String	by	BasicRead()

}

class	BasicRead	{

		operator	fun	getValue(

				r:	Readable,

				property:	KProperty<*>

		)	=	"getValue:	${r.i}"

}

fun	main()	{

		val	x	=	Readable(11)

		val	y	=	Readable(17)

		x.value	eq	"getValue:	11"

		y.value	eq	"getValue:	17"

}

value	in	Readable	is	delegated	to	a	BasicRead	object.	getValue()	takes	a
Readable	parameter	that	allows	it	to	access	the	Readable—when	you	say	by	it
binds	the	BasicRead	to	the	whole	Readable	object.	Notice	that	getValue()
accesses	i	in	Readable.

Because	getValue()	returns	a	String,	the	type	of	value	must	also	be	String.

The	second	getValue()	parameter	property	is	of	the	special	type	KProperty,
and	this	provides	reflective	information	about	the	delegated	property.



If	the	delegated	property	is	a	var,	it	must	handle	both	reading	and	writing,	so	the
delegate	class	requires	both	getValue()	and	setValue():

//	PropertyDelegation/BasicReadWrite.kt

package	propertydelegation

import	atomictest.eq

import	kotlin.reflect.KProperty

class	ReadWriteable(var	i:	Int)	{

		var	msg	=	""

		var	value:	String	by	BasicReadWrite()

}

class	BasicReadWrite	{

		operator	fun	getValue(

				rw:	ReadWriteable,

				property:	KProperty<*>

		)	=	"getValue:	${rw.i}"

		operator	fun	setValue(

				rw:	ReadWriteable,

				property:	KProperty<*>,

				s:	String

		)	{

				rw.i	=	s.toIntOrNull()	?:	0

				rw.msg	=	"setValue	to	${rw.i}"

		}

}

fun	main()	{

		val	x	=	ReadWriteable(11)

		x.value	eq	"getValue:	11"

		x.value	=	"99"

		x.msg	eq	"setValue	to	99"

		x.value	eq	"getValue:	99"

}

The	first	two	setValue()	parameters	are	the	same	as	getValue(),	and	the	third
is	the	value	on	the	right	side	of	the	=,	which	is	what	we	want	to	set.	Both
getValue()	and	setValue()	must	agree	on	the	type	that	is	read	and	written,
which	in	this	case	is	String	(the	type	of	value	in	ReadWriteable).

Notice	that	setValue()	accesses	i	in	ReadWriteable,	and	also	msg.

BasicRead.kt	and	BasicReadWrite.kt	do	not	implement	an	interface.	A	class
can	be	used	as	a	delegate	if	it	simply	conforms	to	the	convention	of	having	the
necessary	function(s)	with	the	necessary	signature(s).	However,	you	can	also
implement	the	ReadOnlyProperty	interface,	as	seen	here	in	BasicRead2:

//	PropertyDelegation/BasicRead2.kt

package	propertydelegation

import	atomictest.eq

import	kotlin.properties.ReadOnlyProperty

import	kotlin.reflect.KProperty



class	Readable2(val	i:	Int)	{

		val	value:	String	by	BasicRead2()

		//	SAM	conversion:

		val	value2:	String	by

		ReadOnlyProperty	{	_,	_	->	"getValue:	$i"	}

}

class	BasicRead2	:

		ReadOnlyProperty<Readable2,	String>	{

		override	operator	fun	getValue(

				thisRef:	Readable2,

				property:	KProperty<*>

		)	=	"getValue:	${thisRef.i}"

}

fun	main()	{

		val	x	=	Readable2(11)

		val	y	=	Readable2(17)

		x.value	eq	"getValue:	11"

		x.value2	eq	"getValue:	11"

		y.value	eq	"getValue:	17"

		y.value2	eq	"getValue:	17"

}

Implementing	ReadOnlyProperty	communicates	to	the	reader	that	BasicRead2
can	be	used	as	a	delegate	and	ensures	a	proper	getValue()	definition.

Because	ReadOnlyProperty	has	only	a	single	member	function	(and	it	has	been
defined	as	a	fun	interface	in	the	standard	library),	value2	is	defined	much
more	succinctly	using	a	SAM	conversion.

BasicReadWrite.kt	can	be	modified	to	implement	ReadWriteProperty,
ensuring	proper	getValue()	and	setValue()	definitions:

//	PropertyDelegation/BasicReadWrite2.kt

package	propertydelegation

import	atomictest.eq

import	kotlin.properties.ReadWriteProperty

import	kotlin.reflect.KProperty

class	ReadWriteable2(var	i:	Int)	{

		var	msg	=	""

		var	value:	String	by	BasicReadWrite2()

}

class	BasicReadWrite2	:

		ReadWriteProperty<ReadWriteable2,	String>	{

		override	operator	fun	getValue(

				rw:	ReadWriteable2,

				property:	KProperty<*>

		)	=	"getValue:	${rw.i}"

		override	operator	fun	setValue(

				rw:	ReadWriteable2,

				property:	KProperty<*>,

				s:	String

		)	{

				rw.i	=	s.toIntOrNull()	?:	0



				rw.msg	=	"setValue	to	${rw.i}"

		}

}

fun	main()	{

		val	x	=	ReadWriteable2(11)

		x.value	eq	"getValue:	11"

		x.value	=	"99"

		x.msg	eq	"setValue	to	99"

		x.value	eq	"getValue:	99"

}

Thus,	a	delegate	class	must	contain	either	or	both	of	the	following	functions,
which	are	called	when	the	delegated	property	is	accessed:

1.	 For	reading:
operator	fun	getValue(thisRef:	T,	property:	KProperty<*>):	V

2.	 For	writing:
setValue(thisRef:	T,	property:	KProperty<*>,	value:	V)

If	the	delegated	property	is	a	val,	only	the	first	function	is	required	and
ReadOnlyProperty	can	be	implemented	using	a	SAM	conversion.

The	parameters	are:

thisRef:	T	points	to	the	delegate	object,	where	T	is	the	type	of	that
delegate.	If	you	don’t	want	to	use	thisRef	in	the	function,	you	can
effectively	disable	it	by	using	Any?	for	T.
property:	KProperty<*>	provides	information	about	the	property	itself.
The	most	commonly-used	is	name,	which	produces	the	field	name	of	the
delegated	property.
value	is	the	value	stored	by	setValue()	into	the	delegated	property.	V	is	the
type	of	that	property.

getValue()	and	setValue()	can	either	be	defined	by	convention,	or	written	as
implementations	of	ReadOnlyProperty	or	ReadWriteProperty.

To	enable	access	to	private	elements,	nest	the	delegate	class:

//	PropertyDelegation/Accessibility.kt

package	propertydelegation

import	atomictest.eq

import	kotlin.properties.ReadOnlyProperty

import	kotlin.reflect.KProperty



class	Person(

		private	val	first:	String,

		private	val	last:	String

)	{

		val	name	by					//	SAM	conversion:

		ReadOnlyProperty<Person,	String>	{	_,	_	->

				"$first	$last"

		}

}

fun	main()	{

		val	alien	=	Person("Floopy",	"Noopers")

		alien.name	eq	"Floopy	Noopers"

}

Assuming	adequate	access	to	the	elements	in	the	delegating	class,	getValue()
and	setValue()	can	be	written	as	extension	functions:

//	PropertyDelegation/Add.kt

package	propertydelegation2

import	atomictest.eq

import	kotlin.reflect.KProperty

class	Add(val	a:	Int,	val	b:	Int)	{

		val	sum	by	Sum()

}

class	Sum

operator	fun	Sum.getValue(

		thisRef:	Add,

		property:	KProperty<*>

)	=	thisRef.a	+	thisRef.b

fun	main()	{

		val	addition	=	Add(144,	12)

		addition.sum	eq	156

}

This	way	you	can	use	an	existing	class	that	you	are	unable	to	modify	or	inherit
and	still	delegate	a	property	with	it.

Here,	when	you	set	the	value	of	the	property,	the	number	stored	is	the	Fibonacci
number	for	that	value,	using	the	fibonacci()	function	from	the	Recursion	atom:

//	PropertyDelegation/FibonacciProperty.kt

package	propertydelegation

import	kotlin.properties.ReadWriteProperty

import	kotlin.reflect.KProperty

import	recursion.fibonacci

import	atomictest.eq

class	Fibonacci	:

		ReadWriteProperty<Any?,	Long>	{

		private	var	current:	Long	=	0

		override	operator	fun	getValue(

				thisRef:	Any?,



				property:	KProperty<*>

		)	=	current

		override	operator	fun	setValue(

				thisRef:	Any?,

				property:	KProperty<*>,

				value:	Long

		)	{

				current	=	fibonacci(value.toInt())

		}

}

fun	main()	{

		var	fib	by	Fibonacci()

		fib	eq	0L

		fib	=	22L

		fib	eq	17711L

		fib	=	90L

		fib	eq	2880067194370816120L

}

fib	in	main()	is	a	local	delegated	property—it’s	defined	inside	a	function	rather
than	a	class.	A	delegated	property	can	also	be	defined	at	file	scope.

ReadWriteProperty’s	first	generic	argument	can	be	Any?	because	we	never	use
it	to	access	anything	inside	Fibonacci,	which	would	require	specific	type
information.	Instead	we	manipulate	the	current	property	as	we	can	in	any
member	function.

In	most	of	the	examples	we’ve	seen	so	far,	the	first	parameter	of	getValue()	and
setValue()	are	of	a	specific	type.	Those	delegates	were	tied	to	that	specific
type.	Sometimes	it	is	possible	to	create	a	general-purpose	delegate	by	ignoring
the	first	type	as	Any?.	For	example,	suppose	we’d	like	to	store	each	delegated
String	property	in	a	text	file	named	for	that	property:

//	PropertyDelegation/FileDelegate.kt

package	propertydelegation

import	kotlin.properties.ReadWriteProperty

import	kotlin.reflect.KProperty

import	checkinstructions.DataFile

class	FileDelegate	:

		ReadWriteProperty<Any?,	String>	{

		override	fun	getValue(

				thisRef:	Any?,

				property:	KProperty<*>

		):	String	{

				val	file	=

						DataFile(property.name	+	".txt")

				return	if	(file.exists())

						file.readText()

				else	""

		}

		override	fun	setValue(

				thisRef:	Any?,

				property:	KProperty<*>,



				value:	String

		)	{

				DataFile(property.name	+	".txt")

						.writeText(value)

		}

}

This	delegate	only	needs	to	interact	with	the	file,	and	doesn’t	need	anything
through	thisRef.	We	ignore	thisRef	by	typing	it	as	Any?,	because	Any?	has	no
interesting	operations.	We	are	interested	in	property.name,	which	is	the	name	of
the	field.	Now	we	can	automatically	create	a	file	associated	with	each	property
and	store	that	property’s	data	in	that	file:

//	PropertyDelegation/Configuration.kt

package	propertydelegation

import	checkinstructions.DataFile

import	atomictest.eq

class	Configuration	{

		var	user	by	FileDelegate()

		var	id	by	FileDelegate()

		var	project	by	FileDelegate()

}

fun	main()	{

		val	config	=	Configuration()

		config.user	=	"Luciano"

		config.id	=	"Ramalho47"

		config.project	=	"MyLittlePython"

		DataFile("user.txt").readText()	eq	"Luciano"

		DataFile("id.txt").readText()	eq	"Ramalho47"

		DataFile("project.txt").readText()	eq

				"MyLittlePython"

}

Because	it	can	ignore	the	surrounding	type,	FileDelegate	is	reusable.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Property	Delegation	Tools

The	standard	library	contains	special	property	delegation	operations.

Map	is	one	of	the	few	types	in	the	Kotlin	library	that	is	preconfigured	to	be	used
as	a	delegated	property.	A	single	Map	can	be	used	to	store	all	the	properties	in	a
class.	Each	property	identifier	becomes	a	String	key	for	the	map,	and	the
property’s	type	is	captured	in	the	associated	value:

//	DelegationTools/CarService.kt

package	propertydelegation

import	atomictest.eq

class	Driver(

		map:	MutableMap<String,	Any?>

)	{

		var	name:	String	by	map

		var	age:	Int	by	map

		var	id:	String	by	map

		var	available:	Boolean	by	map

		var	coord:	Pair<Double,	Double>	by	map

}

fun	main()	{

		val	info	=	mutableMapOf<String,	Any?>(

				"name"	to	"Bruno	Fiat",

				"age"	to	22,

				"id"	to	"X97C111",

				"available"	to	false,

				"coord"	to	Pair(111.93,	1231.12)

		)

		val	driver	=	Driver(info)

		driver.available	eq	false

		driver.available	=	true

		info	eq	"{name=Bruno	Fiat,	age=22,	"	+

				"id=X97C111,	available=true,	"	+

				"coord=(111.93,	1231.12)}"

}

Notice	that	the	original	Map	info	is	modified	when	setting	driver.available	=
true.	This	works	because	the	Kotlin	standard	library	contains	Map	extension
functions	getValue()	and	setValue()	that	enable	property	delegation.	These
simplified	versions	show	how	they	work:

//	DelegationTools/MapAccessors.kt

package	delegationtools

import	kotlin.reflect.KProperty



operator	fun	MutableMap<String,	Any>.getValue(

		thisRef:	Any?,	property:	KProperty<*>

):	Any?	{

		return	this[property.name]

}

operator	fun	MutableMap<String,	Any>.setValue(

		thisRef:	Any?,	property:	KProperty<*>,

		value:	Any

)	{

		this[property.name]	=	value

}

To	see	the	actual	library	definitions,	put	the	cursor	on	the	by	keyword	in	IntelliJ
IDEA	or	Android	Studio	and	invoke	“Go	to	Declaration”.

Delegates.observable()	observes	modifications	of	a	mutable	property.	Here,
we	trace	old	and	new	values:

//	DelegationTools/Team.kt

package	delegationtools

import	kotlin.properties.Delegates.observable

import	atomictest.eq

class	Team	{

		var	msg	=	""

		var	captain:	String	by	observable("<0>")	{

				prop,	old,	new	->

						msg	+=	"${prop.name}	$old	to	$new	"

		}

}

fun	main()	{

		val	team	=	Team()

		team.captain	=	"Adam"

		team.captain	=	"Amanda"

		team.msg	eq	"captain	<0>	to	Adam	"	+

				"captain	Adam	to	Amanda"

}

observable()	takes	two	arguments:

1.	 The	initial	value	for	the	property;	"<0>"	in	this	case.
2.	 A	function	which	is	the	action	to	perform	when	the	property	is	modified.

Here,	we	use	a	lambda.	The	function	arguments	are	the	property	being
changed,	the	current	value	of	that	property,	and	the	value	it’s	being	changed
to.

Delegates.vetoable()	allows	you	to	prevent	a	change	to	a	property	if	the	new
property	value	doesn’t	satisfy	the	given	predicate.	Here,	aName()	insists	that	the
team	captain’s	name	begin	with	the	letter	“A”:

https://www.jetbrains.com/help/idea/navigating-through-the-source-code.html#go_to_declaration


//	DelegationTools/TeamWithTraditions.kt

package	delegationtools

import	atomictest.*

import	kotlin.properties.Delegates

import	kotlin.reflect.KProperty

fun	aName(

		property:	KProperty<*>,

		old:	String,

		new:	String

)	=	if	(new.startsWith("A"))	{

		trace("$old	->	$new")

		true

}	else	{

		trace("Name	must	start	with	'A'")

		false

}

interface	Captain	{

		var	captain:	String

}

class	TeamWithTraditions	:	Captain	{

		override	var	captain:	String

				by	Delegates.vetoable("Adam",	::aName)

}

class	TeamWithTraditions2	:	Captain	{

		override	var	captain:	String

				by	Delegates.vetoable("Adam")	{

						_,	old,	new	->

								if	(new.startsWith("A"))	{

										trace("$old	->	$new")

										true

								}	else	{

										trace("Name	must	start	with	'A'")

										false

								}

				}

}

fun	main()	{

		listOf(

				TeamWithTraditions(),

				TeamWithTraditions2()

		).forEach	{

				it.captain	=	"Amanda"

				it.captain	=	"Bill"

				it.captain	eq	"Amanda"

		}

		trace	eq	"""

				Adam	->	Amanda

				Name	must	start	with	'A'

				Adam	->	Amanda

				Name	must	start	with	'A'

		"""

}

Delegates.vetoable()	takes	two	arguments:	the	initial	value	for	the	property,
and	an	onChange()	function,	which	is	::aName	in	this	example.	onChange()
takes	three	arguments:	property:	KProperty<*>,	the	old	value	currently	held



by	the	property,	and	the	new	value	being	placed	in	the	property.	The	function
returns	a	Boolean	indicating	whether	the	change	is	successful	or	prevented.

TeamWithTraditions2	defines	Delegates.vetoable()	using	a	lambda	instead
of	the	function	aName().

The	remaining	tool	in	properties.Delegates	is	notNull(),	which	produces	a
property	that	must	be	initialized	before	it	can	be	read:

//	DelegationTools/NeverNull.kt

package	delegationtools

import	atomictest.*

import	kotlin.properties.Delegates

class	NeverNull	{

		var	nn:	Int	by	Delegates.notNull()

}

fun	main()	{

		val	non	=	NeverNull()

		capture	{

				non.nn

		}	eq	"IllegalStateException:	Property	"	+

				"nn	should	be	initialized	before	get."

		non.nn	=	11

		non.nn	eq	11

}

Trying	to	read	non.nn	before	nn	has	been	assigned	a	value	produces	an
exception.	After	nn	has	been	assigned,	you	can	successfully	read	it.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Lazy	Initialization

So	far,	you’ve	learned	two	ways	to	initialize	properties.

1.	 Store	the	initial	value	at	the	point	of	definition,	or	in	the	constructor.
2.	 Define	a	custom	getter	that	computes	the	property	for	each	access.

This	atom	explores	a	third	use	case:	costly	initialization	that	you	might	not	need
right	away,	or	ever.	For	example:

Complex	and	time-consuming	calculations
Network	requests
Database	access

This	can	produce	two	problems:

1.	 Long	application	start-up	time.
2.	 Performing	unnecessary	work	for	a	property	that	is	never	used,	or	that	can

have	delayed	access.

This	happens	frequently	enough	that	Kotlin	includes	a	built-in	solution.	A	lazy
property	is	initialized	when	it’s	first	used,	rather	than	when	it’s	created.	If	we
never	use	a	lazy	property,	it	never	performs	that	expensive	initialization.

The	concept	of	lazy	properties	isn’t	unique	to	Kotlin.	Laziness	can	be
implemented	within	other	languages,	whether	or	not	they	provide	direct	support.
Kotlin	provides	a	consistent,	recognizable	idiom	for	such	properties	using
property	delegation.	With	a	lazy	property,	by	is	followed	by	a	call	to	lazy():

val	lazyProperty	by	lazy	{	initializer	}

lazy()	takes	a	lambda	containing	the	initialization	logic.	As	usual,	the	last
expression	in	the	lambda	becomes	the	result,	which	is	assigned	to	the	property:

//	LazyInitialization/LazySyntax.kt

package	lazyinitialization

import	atomictest.*



val	idle:	String	by	lazy	{

		trace("Initializing	'idle'")

		"I'm	never	used"

}

val	helpful:	String	by	lazy	{

		trace("Initializing	'helpful'")

		"I'm	helping!"

}

fun	main()	{

		trace(helpful)

		trace	eq	"""

				Initializing	'helpful'

				I'm	helping!

		"""

}

The	idle	property	isn’t	initialized	because	it’s	never	accessed.

Notice	that	both	helpful	and	idle	are	vals.	Without	lazy	initialization,	you’d
be	forced	to	make	them	vars,	producing	less-reliable	code.

We	can	see	all	the	work	that	lazy	initialization	does	for	you	by	implementing	the
behavior	for	an	Int	property	without	it:

//	LazyInitialization/LazyInt.kt

package	lazyinitialization

import	atomictest.*

class	LazyInt(val	init:	()	->	Int)	{

		private	var	helper:	Int?	=	null

		val	value:	Int

				get()	{

						if	(helper	==	null)

								helper	=	init()

						return	helper!!

				}

}

fun	main()	{

		val	later	=	LazyInt	{

				trace("Initializing	'later'")

				5

		}

		trace("First	'value'	access:")

		trace(later.value)

		trace("Second	'value'	access:")

		trace(later.value)

		trace	eq	"""

				First	'value'	access:

				Initializing	'later'

				5

				Second	'value'	access:

				5

		"""

}



The	value	property	doesn’t	store	a	value,	but	instead	has	a	getter	that	retrieves
the	value	from	the	helper	property.	This	is	similar	to	the	code	Kotlin	generates
for	lazy.

Now	we	can	compare	the	three	ways	to	initialize	a	property—at	the	point	of
definition,	using	a	getter,	and	using	lazy	initialization:

//	LazyInitialization/PropertyOptions.kt

package	lazyinitialization

import	atomictest.trace

fun	compute(i:	Int):	Int	{

		trace("Compute	$i")

		return	i

}

object	Properties	{

		val	atDefinition	=	compute(1)

		val	getter

				get()	=	compute(2)

		val	lazyInit	by	lazy	{	compute(3)	}

		val	never	by	lazy	{	compute(4)	}

}

fun	main()	{

		listOf(

				Properties::atDefinition,

				Properties::getter,

				Properties::lazyInit

		).forEach	{

				trace("${it.name}:")

				trace("${it.get()}")

				trace("${it.get()}")

		}

		trace	eq	"""

				Compute	1

				atDefinition:

				1

				1

				getter:

				Compute	2

				2

				Compute	2

				2

				lazyInit:

				Compute	3

				3

				3

		"""

}

atDefinition	is	initialized	when	you	create	an	instance	of	Properties.
“Compute	1”	appears	before	“atDefinition:”	which	shows	that	initialization
happens	before	any	accesses.
getter	is	computed	every	time	you	access	it.	“Compute	2”	appears	twice,
once	for	each	access	to	the	property.



The	initialization	value	for	lazyInit	is	only	calculated	the	first	time	it	is
accessed.	Initialization	never	happens	if	you	don’t	access	that	property—
notice	that	“Compute	4”	never	appears	in	the	trace.

Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



Late	Initialization

Sometimes	you	want	to	initialize	properties	of	your	class	after	it	is	created,
but	in	a	separate	member	function	instead	of	using	lazy.

For	example,	a	framework	or	library	might	require	initialization	in	a	special
function.	If	you	extend	that	library	class,	you	can	provide	your	own
implementation	of	that	special	function.

Consider	a	Bag	interface	with	a	setUp()	that	initializes	instances:

//	LateInitialization/Bag.kt

package	lateinitialization

interface	Bag	{

		fun	setUp()

}

Suppose	we	want	to	reuse	a	library	that	creates	and	manipulates	Bags	and
guarantees	that	setUp()	is	called.	This	library	requires	subclass	initialization	in
setUp()	instead	of	in	a	constructor:

//	LateInitialization/Suitcase.kt

package	lateinitialization

import	atomictest.eq

class	Suitcase	:	Bag	{

		private	var	items:	String?	=	null

		override	fun	setUp()	{

				items	=	"socks,	jacket,	laptop"

		}

		fun	checkSocks():	Boolean	=

				items?.contains("socks")	?:	false

}

fun	main()	{

		val	suitcase	=	Suitcase()

		suitcase.setUp()

		suitcase.checkSocks()	eq	true

}

Suitcase	initializes	items	by	overriding	setUp().	However,	we	can’t	just	define
items	as	a	String—if	we	do	that,	we	must	provide	a	non-null	initializer	in	the
constructor.	Using	a	stub	value	such	as	an	empty	String	is	a	bad	practice



because	you	never	know	whether	it’s	actually	been	initialized.	null	indicates
that	it’s	not	initialized.

Defining	items	as	a	nullable	String?	means	we	must	check	for	null	in	all
member	functions,	as	in	checkSocks().	However,	we	know	that	the	library
we’re	reusing	initializes	items	by	calling	setUp(),	so	the	null	checks	should
not	be	necessary.

The	lateinit	property	modifier	fixes	this	problem—here,	we	initialize	items
after	creating	an	instance	of	BetterSuitcase:

//	LateInitialization/BetterSuitcase.kt

package	lateinitialization

import	atomictest.eq

class	BetterSuitcase	:	Bag	{

		lateinit	var	items:	String

		override	fun	setUp()	{

				items	=	"socks,	jacket,	laptop"

		}

		fun	checkSocks()	=	"socks"	in	items

}

fun	main()	{

		val	suitcase	=	BetterSuitcase()

		suitcase.setUp()

		suitcase.checkSocks()	eq	true

}

Compare	this	version	of	checkSocks()	with	the	one	in	Suitcase.kt.	lateinit
means	items	is	safely	defined	as	a	non-nullable	property.

lateinit	can	be	used	on	a	property	inside	the	body	of	a	class,	a	top-level
property,	or	local	var.

Limitations:

lateinit	can	only	be	used	on	a	var	property,	not	a	val.
The	property	must	be	a	non-nullable	type.
The	property	cannot	be	a	primitive	type.
lateinit	is	not	allowed	for	abstract	properties	in	an	abstract	class	or
interface.
lateinit	is	not	allowed	for	properties	with	a	custom	get()	or	set().

What	happens	if	you	forget	to	initialize	such	a	property?	You	won’t	get	compile-
time	errors	or	warnings,	because	the	initialization	logic	might	be	complex	and



depend	on	other	properties	that	Kotlin	can’t	monitor:

//	LateInitialization/FaultySuitcase.kt

package	lateinitialization

import	atomictest.*

class	FaultySuitcase	:	Bag	{

		lateinit	var	items:	String

		override	fun	setUp()	{}

		fun	checkSocks()	=	"socks"	in	items

}

fun	main()	{

		val	suitcase	=	FaultySuitcase()

		suitcase.setUp()

		capture	{

				suitcase.checkSocks()

		}	eq

				"UninitializedPropertyAccessException"	+

				":	lateinit	property	items	"	+

				"has	not	been	initialized"

}

This	runtime	exception	has	enough	detail	for	you	to	easily	discover	and	fix	the
problem.	Tracking	down	an	error	reported	by	a	null	pointer	exception	is	usually
much	more	difficult.

.isInitialized	will	tell	you	whether	a	lateinit	property	been	initialized.	The
property	must	be	in	your	current	scope,	and	is	accessed	using	the	::	operator:

//	LateInitialization/IsInitialized.kt

package	lateinitialization

import	atomictest.*

class	WithLate	{

		lateinit	var	x:	String

		fun	status()	=	"${::x.isInitialized}"

}

lateinit	var	y:	String

fun	main()	{

		trace("${::y.isInitialized}")

		y	=	"Ready"

		trace("${::y.isInitialized}")

		val	withlate	=	WithLate()

		trace(withlate.status())

		withlate.x	=	"Set"

		trace(withlate.status())

		trace	eq	"false	true	false	true"

}

Although	you	can	create	a	local	lateinit	var,	you	cannot	call	.isInitialized
on	it	because	references	to	local	vars	or	vals	are	not	supported.



Exercises	and	solutions	can	be	found	at	www.AtomicKotlin.com.



APPENDICES



Appendix	A:	AtomicTest

This	minimal	test	framework	is	used	to	validate	the	book	examples.	It	also
helps	introduce	and	promote	unit	testing	early	in	the	learning	process.

This	framework	is	described	in	the	following	atoms:

Testing	introduces	the	framework	and	describes	the	eq	and	neq	functions
and	the	trace	object.
Exceptions	introduces	the	capture()	function.
Exception	Handling	describes	the	capture()	function	implementation.
Unit	Testing	uses	AtomicTest	to	help	introduce	the	concept	of	unit	testing.

//	AtomicTest/AtomicTest.kt

package	atomictest

import	kotlin.math.abs

import	kotlin.reflect.KClass

const	val	ERROR_TAG	=	"[Error]:	"

private	fun	<L,	R>	test(

		actual:	L,

		expected:	R,

		checkEquals:	Boolean	=	true,

		predicate:	()	->	Boolean

)	{

		println(actual)

		if	(!predicate())	{

				print(ERROR_TAG)

				println("$actual	"	+

						(if	(checkEquals)	"!="	else	"==")	+

						"	$expected")

		}

}

/**

	*	Compares	the	string	representation

	*	of	this	object	with	the	string	`rval`.

	*/

infix	fun	Any.eq(rval:	String)	{

		test(this,	rval)	{

				toString().trim()	==	rval.trimIndent()

		}

}

/**

	*	Verifies	this	object	is	equal	to	`rval`.

	*/

infix	fun	<T>	T.eq(rval:	T)	{

		test(this,	rval)	{



				this	==	rval

		}

}

/**

	*	Verifies	this	object	is	!=	`rval`.

	*/

infix	fun	<T>	T.neq(rval:	T)	{

		test(this,	rval,	checkEquals	=	false)	{

				this	!=	rval

		}

}

/**

	*	Verifies	that	a	`Double`	number	is	equal

	*	to	`rval`	within	a	positive	delta.

	*/

infix	fun	Double.eq(rval:	Double)	{

		test(this,	rval)	{

				abs(this	-	rval)	<	0.0000001

		}

}

/**

	*	Holds	captured	exception	information:

	*/

class	CapturedException(

		private	val	exceptionClass:	KClass<*>?,

		private	val	actualMessage:	String

)	{

		private	val	fullMessage:	String

				get()	{

						val	className	=

								exceptionClass?.simpleName	?:	""

						return	className	+	actualMessage

				}

		infix	fun	eq(message:	String)	{

				fullMessage	eq	message

		}

		infix	fun	contains(parts:	List<String>)	{

				if	(parts.any	{	it	!in	fullMessage	})	{

						print(ERROR_TAG)

						println("Actual	message:	$fullMessage")

						println("Expected	parts:	$parts")

				}

		}

		override	fun	toString()	=	fullMessage

}

/**

	*	Captures	an	exception	and	produces

	*	information	about	it.	Usage:

	*				capture	{

	*						//	Code	that	fails

	*				}	eq	"FailureException:	message"

	*/

fun	capture(f:()	->	Unit):	CapturedException	=

		try	{

				f()

				CapturedException(null,

						"$ERROR_TAG	Expected	an	exception")

		}	catch	(e:	Throwable)	{

				CapturedException(e::class,

						(e.message?.let	{	":	$it"	}	?:	""))



		}

/**

	*	Accumulates	output	when	called	as	in:

	*			trace("info")

	*			trace(object)

	*	Later	compares	accumulated	to	expected:

	*			trace	eq	"expected	output"

	*/

object	trace	{

		private	val	trc	=	mutableListOf<String>()

		operator	fun	invoke(obj:	Any?)	{

				trc	+=	obj.toString()

		}

		/**

			*	Compares	trc	contents	to	a	multiline

			*	`String`	by	ignoring	white	space.

			*/

		infix	fun	eq(multiline:	String)	{

				val	trace	=	trc.joinToString("\n")

				val	expected	=	multiline.trimIndent()

						.replace("\n",	"	")

				test(trace,	multiline)	{

						trace.replace("\n",	"	")	==	expected

				}

				trc.clear()

		}

}



Appendix	B:	Java	Interoperability

This	appendix	describes	issues	and	techniques	for	interfacing	between
Kotlin	and	Java.

An	essential	Kotlin	design	goal	is	to	create	a	seamless	experience	for	Java
programmers.	If	you	want	to	slowly	migrate	to	Kotlin,	you	can	easily	start	by
sprinkling	bits	of	Kotlin	into	your	existing	Java	project.	This	way	you	can	write
new	Kotlin	code	atop	your	Java	base,	benefiting	from	Kotlin	language	features
without	being	forced	to	rewrite	Java	code	when	it	doesn’t	make	sense.

Not	only	is	it	easy	to	call	Java	code	from	Kotlin,	it’s	also	straightforward	to	call
Kotlin	code	within	a	Java	program.

Calling	Java	from	Kotlin
To	use	a	Java	class	from	Kotlin,	import	it,	create	an	instance,	and	call	a	function,
just	as	you	would	in	Java.	Here,	we	use	java.util.Random():

//	interoperability/Random.kt

import	atomictest.eq

import	java.util.Random

fun	main()	{

		val	rand	=	Random(47)

		rand.nextInt(100)	eq	58

}

As	with	creating	any	instance	in	Kotlin,	you	don’t	need	Java’s	new.	A	class	from
a	Java	library	works	like	a	native	Kotlin	class.

JavaBean-style	getters	and	setters	in	a	Java	class	become	properties	in	Kotlin:

//	interoperability/Chameleon.java

package	interoperability;

import	java.io.Serializable;

public

class	Chameleon	implements	Serializable	{

		private	int	size;

		private	String	color;

		public	int	getSize()	{

				return	size;



		}

		public	void	setSize(int	newSize)	{

				size	=	newSize;

		}

		public	String	getColor()	{

				return	color;

		}

		public	void	setColor(String	newColor)	{

				color	=	newColor;

		}

}

When	working	with	Java,	the	package	name	must	be	identical	(including	case)	to
the	directory	name.	Java	package	names	typically	contain	only	lowercase	letters.
To	conform	to	this	convention,	this	appendix	uses	only	lowercase	letters	in	the
interoperability	example	subdirectory	name.

The	imported	Chameleon	class	works	like	a	Kotlin	class	with	properties:

//	interoperability/UseBeanClass.kt

import	interoperability.Chameleon

import	atomictest.eq

fun	main()	{

		val	chameleon	=	Chameleon()

		chameleon.size	=	1

		chameleon.size	eq	1

		chameleon.color	=	"green"

		chameleon.color	eq	"green"

		chameleon.color	=	"turquoise"

		chameleon.color	eq	"turquoise"

}

Extension	functions	are	especially	helpful	when	you	use	an	existing	Java	library
that	lacks	needed	member	functions.	For	example,	we	can	add	an
adjustToTemperature()	operation	to	Chameleon:

//	interoperability/ExtensionsToJavaClass.kt

package	interop

import	interoperability.Chameleon

import	atomictest.eq

fun	Chameleon.adjustToTemperature(

		isHot:	Boolean

)	{

		color	=	if	(isHot)	"grey"	else	"black"

}

fun	main()	{

		val	chameleon	=	Chameleon()

		chameleon.size	=	2

		chameleon.size	eq	2

		chameleon.adjustToTemperature(isHot	=	true)

		chameleon.color	eq	"grey"

}



The	Kotlin	standard	library	contains	many	extensions	for	classes	from	the	Java
standard	library	such	as	List	and	String.

Calling	Kotlin	from	Java
Kotlin	produces	libraries	that	are	usable	from	Java.	For	the	Java	programmer,	a
Kotlin	library	looks	like	a	Java	library.

Because	everything	in	Java	is	a	class,	let’s	start	with	a	Kotlin	class	containing	a
property	and	a	function:

//	interoperability/KotlinClass.kt

package	interop

class	Basic	{

		var	property1	=	1

		fun	value()	=	property1	*	10

}

If	you	import	this	class	into	Java,	it	looks	like	an	ordinary	Java	class:

//	interoperability/UsingKotlinClass.java

package	interoperability;

import	interop.Basic;

import	static	atomictest.AtomicTestKt.eq;

public	class	UsingKotlinClass	{

		public	static	void	main(String[]	args)	{

				Basic	b	=	new	Basic();

				eq(b.getProperty1(),	1);

				b.setProperty1(12);

				eq(b.value(),	120);

		}

}

property1	becomes	a	private	field	containing	JavaBean-style	getters	and
setters.	The	value()	member	function	becomes	a	Java	method	with	the	same
name.

We	have	also	imported	AtomicTest,	which	requires	additional	ceremony	in	Java:
we	must	import	it	using	the	static	keyword	and	give	the	package	name.	eq()
can	only	be	called	as	an	ordinary	function	because	Java	doesn’t	support	infix
notation.

If	a	Kotlin	class	is	in	the	same	package	as	Java	code,	you	don’t	need	to	import	it:

//	interoperability/KotlinDataClass.kt

package	interoperability



data	class	Staff(

		var	name:	String,

		var	role:	String

)

data	classes	generate	extra	member	functions	like	equals(),	hashCode()	and
toString(),	all	of	which	work	seamlessly	within	Java.	At	the	end	of	main(),	we
verify	the	implementations	of	equals()	and	hashCode()	by	placing	a	Data
object	into	a	HashMap,	then	retrieving	it:

//	interoperability/UseDataClass.java

package	interoperability;

import	java.util.HashMap;

import	static	atomictest.AtomicTestKt.eq;

public	class	UseDataClass	{

		public	static	void	main(String[]	args)	{

				Staff	e	=	new	Staff(

						"Fluffy",	"Office	Manager");

				eq(e.getRole(),	"Office	Manager");

				e.setName("Uranus");

				e.setRole("Assistant");

				eq(e,

						"Staff(name=Uranus,	role=Assistant)");

				//	Call	copy()	from	the	data	class:

				Staff	cf	=	e.copy("Cornfed",	"Sidekick");

				eq(cf,

						"Staff(name=Cornfed,	role=Sidekick)");

				HashMap<Staff,	String>	hm	=

						new	HashMap<>();

				//	Employees	work	as	hash	keys:

				hm.put(e,	"Cheerful");

				eq(hm.get(e),	"Cheerful");

		}

}

If	you	use	the	command	line	to	run	Java	code	that	incorporates	Kotlin	code,	you
must	include	kotlin-runtime.jar	as	a	dependency,	otherwise	you’ll	get
runtime	exceptions	complaining	that	some	of	the	library	utility	classes	are	not
found.	IntelliJ	IDEA	automatically	includes	kotlin-runtime.jar.

Kotlin	top-level	functions	map	to	static	methods	in	a	Java	class	that	takes	its
name	from	the	Kotlin	file:

//	interoperability/TopLevelFunction.kt

package	interop

fun	hi()	=	"Hello!"

To	import,	specify	the	class	name	generated	by	Kotlin.	This	name	must	also	be
used	when	calling	the	static	method:



//	interoperability/CallTopLevelFunction.java

package	interoperability;

import	interop.TopLevelFunctionKt;

import	static	atomictest.AtomicTestKt.eq;

public	class	CallTopLevelFunction	{

		public	static	void	main(String[]	args)	{

				eq(TopLevelFunctionKt.hi(),	"Hello!");

		}

}

If	you	don’t	want	to	qualify	hi()	with	the	package	name,	use	import	static	as
we	do	with	AtomicTest:

//	interoperability/CallTopLevelFunction2.java

package	interoperability;

import	static	interop.TopLevelFunctionKt.hi;

import	static	atomictest.AtomicTestKt.eq;

public	class	CallTopLevelFunction2	{

		public	static	void	main(String[]	args)	{

				eq(hi(),	"Hello!");

		}

}

If	you	don’t	like	the	class	name	generated	by	Kotlin,	you	can	change	it	using	the
@JvmName	annotation:

//	interoperability/ChangeName.kt

@file:JvmName("Utils")

package	interop

fun	salad()	=	"Lettuce!"

Now	instead	of	ChangeNameKt,	we	use	Utils:

//	interoperability/MakeSalad.java

package	interoperability;

import	interop.Utils;

import	static	atomictest.AtomicTestKt.eq;

public	class	MakeSalad	{

		public	static	void	main(String[]	args)	{

				eq(Utils.salad(),	"Lettuce!");

		}

}

You	can	find	further	details	in	the	documentation.

Adapting	Java	to	Kotlin
One	of	Kotlin’s	design	goals	is	to	take	an	existing	Java	type	and	adapt	it	to	your
needs.	This	ability	is	not	restricted	to	library	designers—the	same	logic	can	be

https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html


applied	to	any	external	code	base.

In	Recursion,	we	created	Fibonacci.kt	to	efficiently	produce	Fibonacci
numbers.	That	implementation	is	limited	by	the	size	of	the	Long	it	returns.	If
you’d	like	to	return	larger	values,	the	Java	standard	library	includes	the
BigInteger	class.	A	few	lines	of	code	morphs	BigInteger	into	something	that
feels	like	a	native	Kotlin	class:

//	interoperability/BigInt.kt

package	biginteger

import	java.math.BigInteger

fun	Int.toBigInteger():	BigInteger	=

		BigInteger.valueOf(toLong())

fun	String.toBigInteger():	BigInteger	=

		BigInteger(this)

operator	fun	BigInteger.plus(

		other:	BigInteger

):	BigInteger	=	add(other)

The	toBigInteger()	extension	functions	converts	any	Int	or	String	to	a
BigInteger	by	calling	the	BigInteger	constructor	and	passing	the	receiver
string	as	an	argument.

Overloading	the	operator	BigInteger.plus()	allows	you	to	write	number	+
other.	This	makes	working	with	BigInteger	enjoyable	compared	to	Java’s
clumsy	number.plus(other).

Using	BigInteger,	Recursion/Fibonacci.kt	easily	converts	to	produce	much
larger	results:

//	interoperability/BigFibonacci.kt

package	interop

import	atomictest.eq

import	java.math.BigInteger

import	java.math.BigInteger.ONE

import	java.math.BigInteger.ZERO

fun	fibonacci(n:	Int):	BigInteger	{

		tailrec	fun	fibonacci(

				n:	Int,

				current:	BigInteger,

				next:	BigInteger

		):	BigInteger	{

				if	(n	==	0)	return	current

				return	fibonacci(

						n	-	1,	next,	current	+	next)			//	[1]

		}

		return	fibonacci(n,	ZERO,	ONE)

}



fun	main()	{

		(0..7).map	{	fibonacci(it)	}	eq

		"[0,	1,	1,	2,	3,	5,	8,	13]"

		fibonacci(22)	eq	17711.toBigInteger()

		fibonacci(150)	eq

				"9969216677189303386214405760200"

						.toBigInteger()

}

All	Longs	were	replaced	with	BigInteger.	In	main(),	you	see	both	Int	and
String	converted	to	BigInteger	using	different	toBigInteger()	extension
properties.	In	line	[1]	we	use	the	plus	operator	to	find	the	sum	current	+	next;
this	is	identical	to	the	original	version	using	Long.

fibonacci(150)	overflows	the	Recursion/Fibonacci.kt	version,	but	works
fine	after	the	conversion	to	BigInteger.

Java	Checked	Exceptions	&	Kotlin
Java	was	predominantly	patterned	after	the	C++	language,	which	allowed	you	to
specify	the	exceptions	that	a	function	might	throw.	The	Java	designers	decided	to
go	one	step	further	and	force	anyone	calling	that	function	to	catch	every
specified	exception.	This	seemed	like	a	good	idea	at	the	time,	and	thus	was	born
checked	exceptions—an	experiment	that,	to	our	knowledge,	has	not	been
repeated	in	subsequent	programming	languages.

Here’s	how	Java	forces	you	to	catch	checked	exceptions	in	the	process	of
opening,	reading	and	closing	a	file.	We	only	provide	the	basics	to	show	the
checked	exceptions;	you	must	actually	write	more	complex	code	to	correctly
solve	this	problem	in	Java:

//	interoperability/JavaChecked.java

package	interoperability;

import	java.io.*;

import	java.nio.file.*;

import	static	atomictest.AtomicTestKt.eq;

public	class	JavaChecked	{

		//	Build	path	to	current	source	file,	based

		//	on	directory	where	Gradle	is	invoked:

		static	Path	thisFile	=	Paths.get(

				"DataFiles",	"file_wubba.txt");

		public	static	void	main(String[]	args)	{

				BufferedReader	source	=	null;

				try	{

						source	=	new	BufferedReader(

								new	FileReader(thisFile.toFile()));

				}	catch(FileNotFoundException	e)	{

						//	Recover	from	file-open	error



				}

				try	{

						String	first	=	source.readLine();

						eq(first,	"wubba	lubba	dub	dub");

				}	catch(IOException	e)	{

						//	Recover	from	read()	error

				}

				try	{

						source.close();

				}	catch(IOException	e)	{

						//	Recover	from	close()	error

				}

		}

}

Each	of	the	above	operations	involves	checked	exceptions	and	must	be	placed
inside	a	try	block	or	Java	produces	compile-time	errors	for	uncaught	exceptions.

The	only	reason	to	catch	an	exception	is	if	you	can	somehow	recover	from	the
problem.	If	it’s	not	something	you	can	fix,	there’s	no	point	in	writing	a	catch
clause	for	that	exception—just	let	it	become	an	error	report.	In	the	above
examples,	recovery	from	the	errors	seems	dubious,	but	you’re	still	forced	to
write	the	try-catch	blocks.

Let’s	rewrite	this	example	in	Kotlin:

//	interoperability/KotlinChecked.kt

import	atomictest.eq

import	java.io.File

fun	main()	{

		File("DataFiles/file_wubba.txt")

				.readLines()[0]	eq

				"wubba	lubba	dub	dub"

}

Kotlin	allows	us	to	reduce	the	operation	to	a	single	line	of	code	because	it	adds
extension	functions	to	the	Java	File	class.	At	the	same	time,	Kotlin	eliminates
the	checked	exceptions.	If	we	wanted,	we	could	surround	intermediate
operations	with	try-catch	blocks,	but	Kotlin	does	not	enforce	checked
exceptions.	This	provides	error	reporting	without	compelling	you	to	write	the
additional	noisy	code.

Java	libraries	often	use	checked	exceptions	in	situations	that	are	outside	the
programmer’s	control	and	are	typically	unrecoverable.	In	these	cases,	it’s	best	to
catch	the	exception	at	the	top	level	and	restart	the	process,	if	possible.	Requiring
all	intermediate	levels	to	pass	the	exception	only	adds	cognitive	overhead	when
trying	to	understand	the	code.



If	you’re	writing	Kotlin	code	that	is	called	from	Java	and	you	must	specify	a
checked	exception,	Kotlin	provides	the	@Throws	annotation	to	give	this
information	to	the	Java	caller:

//	interoperability/AnnotateThrows.kt

package	interop

import	java.io.IOException

@Throws(IOException::class)

fun	hasCheckedException()	{

		throw	IOException()

}

Here’s	how	hasCheckedException()	is	called	from	Java:

//	interoperability/CatchChecked.java

package	interoperability;

import	interop.AnnotateThrowsKt;

import	java.io.IOException;

import	static	atomictest.AtomicTestKt.eq;

public	class	CatchChecked	{

		public	static	void	main(String[]	args)	{

				try	{

						AnnotateThrowsKt.hasCheckedException();

				}	catch(IOException	e)	{

						eq(e,	"java.io.IOException");

				}

		}

}

If	you	don’t	handle	the	exception,	the	Java	compiler	issues	an	error	message.

Although	Kotlin	includes	language	support	for	exception	handling,	it	tends	to
emphasize	error	reporting	and	reserves	exception	handling	for	those	rare
situations	where	you	can	actually	recover	from	a	problem	(almost	exclusively
I/O	operations).

Nullable	Types	&	Java
Kotlin	ensures	that	pure	Kotlin	code	has	no	null	errors,	but	when	you	call	into
Java,	you	have	no	such	guarantees.	In	the	following	Java	code,	get()	sometimes
returns	null:

//	interoperability/JTool.java

package	interoperability;

public	class	JTool	{

		public	static	JTool	get(String	s)	{

				if(s	==	null)	return	null;

				return	new	JTool();

		}



		public	String	method()	{

				return	"Success";

		}

}

To	use	JTool	within	Kotlin,	you	must	know	how	get()	behaves.	You	have	three
choices,	shown	here	in	the	definitions	of	a,	b	and	c:

//	interoperability/PlatformTypes.kt

package	interop

import	interoperability.JTool

import	atomictest.eq

object	KotlinCode	{

		val	a:	JTool?	=	JTool.get("")		//	[1]

		val	b:	JTool	=	JTool.get("")			//	[2]

		val	c	=	JTool.get("")										//	[3]

}

fun	main()	{

		with(KotlinCode)	{

				a?.method()	eq	"Success"					//	[4]

				b.method()	eq	"Success"

				c.method()	eq	"Success"						//	[5]

				::a.returnType	eq

						"interoperability.JTool?"

				::b.returnType	eq

						"interoperability.JTool"

				::c.returnType	eq

						"interoperability.JTool!"		//	[6]

		}

}

[1]	Specify	the	type	as	nullable.
[2]	Specify	the	type	as	non-nullable.
[3]	Use	type	inference.

The	with()	in	main()	allows	us	to	refer	to	a,	b	and	c	without	the	KotlinCode
qualification.	Because	the	identifiers	are	inside	an	object,	we	can	use	member
reference	syntax	and	the	returnType	property	to	determine	their	types.

To	initialize	a,	b	and	c,	we	pass	a	non-null	String	to	get(),	so	a,	b	and	c	all
end	up	with	non-null	references	and	each	one	can	successfully	call	method().

[4]	Because	a	is	nullable,	it	must	use	?.	during	member	function	calls.
[5]	c	behaves	like	a	non-nullable	reference	and	can	be	dereferenced	without
any	additional	checks.
[6]	Notice	that	c	returns	neither	a	nullable	type	nor	a	non-nullable	type,	but
something	entirely	different:	JTool!.



Type!	is	Kotlin’s	platform	type,	and	has	no	notation—you	can’t	write	it	into	your
code.	It	is	used	whenever	Kotlin	must	infer	a	type	outside	its	domain.

If	a	type	comes	from	Java,	accessing	it	can	produce	a	null	pointer	exception
(NPE).	Here’s	what	happens	when	JTool.get()	returns	a	null	reference:

//	interoperability/NPEOnPlatformType.kt

import	interoperability.JTool

import	atomictest.*

fun	main()	{

		val	xn:	JTool?	=	JTool.get(null)		//	[1]

		xn?.method()	eq	null

		val	yn	=	JTool.get(null)										//	[2]

		yn?.method()	eq	null														//	[3]

		capture	{

				yn.method()																					//	[4]

		}	contains	listOf("NullPointerException")

		capture	{

				val	zn:	JTool	=	JTool.get(null)	//	[5]

		}	eq	"NullPointerException:	"	+

				"JTool.get(null)	must	not	be	null"

}

When	you	call	a	Java	method	like	JTool.get()	inside	Kotlin,	its	return	value
(unless	annotated	as	explained	in	the	next	section)	is	a	platform	type,	which	in
this	case	is	JTool!.

[1]	Because	xn	is	of	the	nullable	type	JTool?,	it	can	successfully	receive	a
null.	Assigning	to	a	nullable	type	is	safe,	because	Kotlin	forces	you	to	test
for	null	using	?.	when	calling	method().
[2]	At	the	point	of	definition,	yn	successfully	receives	the	null	without
complaint	because	Kotlin	infers	it	to	be	the	platform	type	JTool!.
[3]	You	can	dereference	yn	by	using	a	safe-access	call	?.,	which	in	this	case
returns	null.
[4]	However,	using	?.	is	not	required.	You	can	simply	dereference	yn.	In
this	case	you	get	a	NullPointerException	without	any	helpful	message.
[5]	Assigning	to	a	non-nullable	type	can	produce	an	NPE.	Kotlin	checks	for
nullity	at	the	point	of	assignment.	The	initialization	of	zn	fails	because	the
declared	type	JTool	promises	that	zn	is	not	nullable,	but	it	receives	a	null
which	produces	a	NullPointerException,	this	time	with	a	helpful	message.

The	exception	message	contains	detailed	information	about	the	expression	that
produced	the	null:	NullPointerException:	JTool.get(null)	must	not	be



null.	Even	though	it’s	a	runtime	exception,	the	comprehensive	error	message
makes	the	problem	much	easier	than	fixing	a	regular	NPE.

A	platform	type	contains	the	least	amount	of	information	available	for	that	type.
In	this	case,	it	only	tells	you	that	the	type	is	JTool.	It	might	or	might	not	be
nullable—when	using	an	inferred	platform	type	you	simply	don’t	know.

You	can’t	explicitly	declare	a	platform	type	(e.g.	JTool!).	You	can	only	observe
a	platform	type	in	error	messages,	or	when	you	display	the	inferred	type	as	in
PlatformTypes.kt,	or	by	checking	the	type	within	the	IDE.

When	working	on	a	mixed	Kotlin	and	Java	project,	you	may	or	may	not	have
control	over	the	Java	code	base.	When	using	an	external	Java	library,	you	can’t
modify	the	source	code,	so	you	must	work	with	platform	types.

Platform	types	provide	seamless	Java	interoperability,	and	maintain	the
consistency	of	type	inference.	However,	don’t	rely	on	them.	The	proper	strategy
when	calling	un-annotated	Java	code	is	to	avoid	type	inference,	and	instead
understand	whether	or	not	the	code	you	are	calling	can	produce	nulls.

Nullability	Annotations
If	you	control	the	Java	code	base,	you	can	add	nullability	annotations	to	the	Java
code	and	avoid	subtle	NPE	errors.	@Nullable	and	@NotNull	tell	Kotlin	to	treat	a
Java	type	as	nullable	or	non-nullable,	respectively.	Here	we	add	Kotlin
nullability	annotations	to	JTool.java:

//	interoperability/AnnotatedJTool.java

package	interoperability;

import	org.jetbrains.annotations.NotNull;

import	org.jetbrains.annotations.Nullable;

public	class	AnnotatedJTool	{

		@Nullable

		public	static	JTool

		getUnsafe(@Nullable	String	s)	{

				if(s	==	null)	return	null;

				return	getSafe(s);

		}

		@NotNull

		public	static	JTool

		getSafe(@NotNull	String	s)	{

				return	new	JTool();

		}

		public	String	method()	{

				return	"Success";

		}

}



Applying	an	annotation	to	a	Java	parameter	affects	only	that	parameter.
Applying	an	annotation	in	front	of	a	Java	method	modifies	the	return	type.

When	you	call	getUnsafe()	and	getSafe()	in	Kotlin,	Kotlin	treats	the
AnnotatedJTool	member	functions	as	native	Kotlin	nullable	or	non-nullable:

//	interoperability/AnnotatedJava.kt

package	interop

import	interoperability.AnnotatedJTool

import	atomictest.eq

object	KotlinCode2	{

		val	a	=	AnnotatedJTool.getSafe("")

		//	Doesn't	compile:

		//	val	b	=	AnnotatedJTool.getSafe(null)

		val	c	=	AnnotatedJTool.getUnsafe("")

		val	d	=	AnnotatedJTool.getUnsafe(null)

}

fun	main()	{

		with(KotlinCode2)	{

				::a.returnType	eq

						"interoperability.JTool"

				::c.returnType	eq

						"interoperability.JTool?"

				::d.returnType	eq

						"interoperability.JTool?"

		}

}

@NotNull	JTool	is	transformed	to	Kotlin’s	non-nullable	type	JTool,	and	the
annotated	@Nullable	JTool	is	transformed	to	Kotlin’s	JTool?.	You	can	see	this
in	the	types	shown	in	main()	for	a,	c,	and	d.

You	can’t	pass	a	nullable	argument	when	a	non-nullable	argument	is	expected,
even	if	it’s	a	Java	type	annotated	with	@NotNull,	so	Kotlin	won’t	compile
AnnotatedJTool.getSafe(null).

Different	kinds	of	nullability	annotations	are	supported,	using	different	names:

@Nullable	and	@CheckForNull	are	specified	by	the	JSR-305	standard.
@Nullable	and	@NonNull	are	used	in	Android.
@Nullable	and	@NotNull	are	supported	by	JetBrains	tools.
There	are	others.	You	can	find	the	full	list	in	the	Kotlin	documentation.

Kotlin	detects	default	nullability	annotations	for	a	Java	package	or	class,	as
specified	in	the	JSR-305	standard.	If	it’s	@NotNull	by	default,	you	should
explicitly	specify	only	@Nullable	annotations.	If	it’s	@Nullable	by	default,	you

https://kotlinlang.org/docs/java-interop.html#nullability-annotations


should	explicitly	specify	only	@NotNull	annotations.	The	documentation
contains	the	technical	details	for	choosing	the	default	annotation.

If	you	develop	mixed	Kotlin	and	Java	projects,	your	applications	will	be	safer	if
you	use	nullability	annotations	in	your	Java	code.

Collections	&	Java
This	book	doesn’t	require	Java	knowledge.	However,	when	you	write	code	in
Kotlin	for	the	Java	Virtual	Machine	(JVM),	it’s	helpful	to	be	familiar	with	the
Java	standard	collections	library,	because	Kotlin	uses	it	to	create	its	own
collections.

The	Java	collections	library	is	a	set	of	classes	and	interfaces	that	implement
collection	data	structures,	such	as	lists,	sets	and	maps.	These	data	structures
usually	have	clear	and	simple	interfaces,	but	for	speed	may	have	complicated
implementations.

New	languages	typically	create	their	own	collections	library	from	scratch.	For
example,	the	Scala	language	has	its	own	collections	library	which	in	many	ways
surpasses	the	Java	collections	library,	but	also	makes	it	more	challenging	to	mix
Scala	and	Java.

Kotlin’s	collections	library	is	intentionally	not	rewritten	from	scratch.	Instead,	it
consists	of	improvements	atop	the	Java	collections	library.	For	example,	when
you	create	a	mutable	List,	you’re	actually	using	Java’s	ArrayList:

//	interoperability/HiddenArrayList.kt

import	atomictest.eq

fun	main()	{

		val	list	=	mutableListOf(1,	2,	3)

		list.javaClass.name	eq

				"java.util.ArrayList"

}

For	seamless	interoperability	with	Java	code,	Kotlin	uses	the	interfaces	from	the
Java	standard	library,	and	often	the	same	implementations.	This	produces	three
benefits:

1.	 Kotlin	code	can	easily	mix	with	Java	code.	No	additional	conversion	is
required	when	passing	Kotlin	collections	to	Java	code.

https://kotlinlang.org/docs/java-interop.html#jsr-305-support


2.	 Years	of	performance	tuning	in	the	Java	standard	library	is	automatically
available	to	Kotlin	programmers.

3.	 The	standard	library	included	with	a	Kotlin	application	is	small,	because	it
uses	Java	collections	rather	than	defining	its	own.	The	Kotlin	standard
library	consists	primarily	of	extension	functions	that	improve	the	Java
collections.

Kotlin	also	fixes	a	design	problem.	In	Java	all	collection	interfaces	are	mutable.
For	example,	java.util.List	has	methods	add()	and	remove()	that	modify	the
List.	As	we’ve	shown	throughout	this	book,	mutability	is	the	source	of	a
significant	number	of	programming	problems.	Thus,	in	Kotlin,	the	default
Collection	type	is	read-only:

//	interoperability/ReadOnlyByDefault.kt

package	interop

data	class	Animal(val	name:	String)

interface	Zoo	{

		fun	viewAnimals():	Collection<Animal>

}

fun	visitZoo(zoo:	Zoo)	{

		val	animals	=	zoo.viewAnimals()

		//	Compile-time	error:

		//	animals.add(Animal("Grumpy	Cat"))

}

Read-only	collections	are	safer	and	more	bug-free	because	they	prevent
accidental	modification.

Java	provides	a	partial	solution	for	collection	immutability:	when	returning	a
collection	you	can	place	it	inside	a	special	wrapper	that	throws	an	exception	for
any	attempt	to	modify	the	underlying	collection.	This	doesn’t	produce	static	type
checking,	but	can	still	prevent	subtle	bugs.	However,	you	must	remember	to
wrap	the	collection	to	make	it	read-only,	whereas	in	Kotlin	you	must	be	explicit
when	you	want	a	mutable	collection.

Kotlin	has	separate	interfaces	for	mutable	and	read-only	collections:

Collection/MutableCollection
List/MutableList
Set/MutableSet
Map/MutableMap



These	duplicate	the	interfaces	from	the	Java	standard	library:

java.util.Collection

java.util.List

java.util.Set

java.util.Map

In	Kotlin,	as	in	Java,	Collection	is	a	supertype	for	both	List	and	Set.
MutableCollection	extends	Collection	and	is	a	supertype	of	MutableList	and
MutableSet.	Here’s	the	basic	structure:

//	interoperability/CollectionStructure.kt

package	collectionstructure

interface	Collection<E>

interface	List<E>:	Collection<E>

interface	Set<E>:	Collection<E>

interface	Map<K,	V>

interface	MutableCollection<E>

interface	MutableList<E>:

		List<E>,	MutableCollection<E>

interface	MutableSet<E>:

		Set<E>,	MutableCollection<E>

interface	MutableMap<K,	V>:	Map<K,	V>

For	simplicity,	we	show	only	the	names	and	not	the	full	declarations	from	the
Kotlin	standard	library.

Kotlin	mutable	collections	match	their	Java	counterparts.	If	you	compare
MutableCollection	from	kotlin.collections	with	java.util.List,	you’ll
see	that	they	declare	the	same	member	functions	(methods,	in	Java	terminology).
Kotlin’s	Collection,	List,	Set	and	Map	also	duplicate	Java’s	interfaces,	but
without	any	mutation	methods.

Both	kotlin.collections.List	and	kotlin.collections.MutableList	are
visible	from	Java	as	java.util.List.	These	interfaces	are	special:	they	exist
only	in	Kotlin,	but	at	the	bytecode	level	they	are	both	replaced	with	Java’s	List.

A	Kotlin	List	can	be	cast	to	a	Java	List:

//	interoperability/JavaList.kt

import	atomictest.eq

fun	main()	{

		val	list	=	listOf(1,	2,	3)

		(list	is	java.util.List<*>)	eq	true

}



This	code	produces	a	warning:

This	class	shouldn’t	be	used	in	Kotlin.
Use	kotlin.collections.List	or	kotlin.collections.MutableList	instead.

This	is	a	reminder	to	use	Kotlin’s	interfaces,	not	Java’s,	when	programming	in
Kotlin.

Keep	in	mind	that	read-only	is	not	the	same	as	immutable.	A	collection	cannot
be	changed	using	a	read-only	reference,	but	it	can	still	change:

//	interoperability/ReadOnlyCollections.kt

import	atomictest.eq

fun	main()	{

		val	mutable	=	mutableListOf(1,	2,	3)

		//	Read-only	reference	to	a	mutable	list:

		val	list:	List<Int>	=	mutable

		mutable	+=	4

		//	list	has	changed:

		list	eq	"[1,	2,	3,	4]"

}

Here,	the	read-only	list	references	a	MutableList,	which	can	then	be	changed
by	manipulating	mutable.	Because	all	Java	collections	are	mutable,	Java	code
can	modify	a	read-only	Kotlin	collection,	even	if	you	pass	it	via	a	read-only
reference.

Kotlin	collections	don’t	produce	full	safety,	but	provide	a	good	compromise
between	having	a	better	library	and	maintaining	compatibility	with	Java.

Java	Primitive	Types
In	Kotlin,	you	call	a	constructor	to	create	an	object,	but	in	Java	you	must	use	new
to	produce	an	object.	new	places	the	resulting	object	on	the	heap.	Such	types	are
called	reference	types.

Creating	objects	on	the	heap	can	be	inefficient	for	basic	types	such	as	numbers.
For	these	types,	Java	falls	back	on	the	approach	taken	by	C	and	C++:	Instead	of
creating	the	variable	using	new,	a	non-reference	“automatic”	variable	is	created
that	holds	the	value	directly.	Automatic	variables	are	placed	on	the	stack,	making
them	much	more	efficient.	Such	types	get	special	treatment	by	the	JVM	and	are
called	primitive	types.



There	are	a	fixed	number	of	primitive	types:	boolean,	int,	long,	char,	byte,
short,	float	and	double.	Primitive	types	always	contain	a	non-null	value,	and
they	can’t	be	used	as	generic	arguments.	If	you	need	to	store	null	or	use	such
types	as	generic	arguments,	you	can	use	the	corresponding	reference	type
defined	in	the	Java	standard	library,	such	as	java.lang.Boolean	or
java.lang.Integer.	These	types	are	often	called	wrapper	types	or	boxed	types
to	emphasize	that	they	only	wrap	the	primitive	value	and	store	it	on	the	heap.

//	interoperability/JavaWrapper.java

package	interoperability;

import	java.util.*;

public	class	JavaWrapper	{

		public	static	void	main(String[]	args)	{

				//	Primitive	type

				int	i	=	10;

				//	Wrapper	types

				Integer	iOrNull	=	null;

				List<Integer>	list	=	new	ArrayList<>();

		}

}

Java	distinguishes	between	reference	types	and	primitive	types,	but	Kotlin	does
not.	You	use	the	same	type	Int	both	for	defining	an	integer	var/val	or	using	it	as
a	generic	argument.	At	the	JVM	level,	Kotlin	employs	the	same	primitive	type
support.	When	possible,	Kotlin	replaces	Int	with	a	primitive	int	in	the
bytecode.	A	nullable	Int?	or	Int	used	as	a	generic	argument	can	only	be
represented	using	the	wrapper	type:

//	interoperability/KotlinWrapper.kt

package	interop

fun	main()	{

		//	Generates	a	primitive	int:

		val	i	=	10

		//	Generates	wrapper	types:

		val	iOrNull:	Int?	=	null

		val	list:	List<Int>	=	listOf(1,	2,	3)

}

You	normally	don’t	need	to	think	much	about	whether	primitives	or	wrappers	are
generated	by	the	Kotlin	compiler,	but	it’s	useful	to	know	how	it’s	implemented
on	the	JVM.

-

The	documentation	explains	more	about	the	nuances	of	Kotlin/Java
interoperability.

https://kotlinlang.org/docs/java-interop.html
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